My watch list  

Looking for clues in spin ice: Spectral fingerprint of magnetic monopoles discovered

S. Gliga / Argonne National Laboratory

Monopole-antimonopole structure (orange) in an artificial spin-ice lattice composed of magnetic elements (blue).

02-05-2013: An international team of researchers including scientists from Jülich have proposed a new method to identify and analyse exotic material properties in certain nanostructured magnets using experiments. The researchers hope that this will allow such properties in artificial spin-ice materials to be detected more easily, which could be used one day to develop novel logic elements for data processing.

Spin-ice materials possess unusual properties. For example, magnetic monopoles and antimonopoles can form within them in pairs connected via strings of magnetic elements. The physicists used computer simulations to show that such magnetic structures in artificial spin ice can be identified by characteristic oscillations in the microwave range.  Like a fingerprint, the oscillations tell us about the occurrence of monopoles and their frequency in the sample being investigated. The oscillations can be initiated by exciting the samples using magnetic field pulses, for example, or laser pulses.

As the monopole structures can be selectively positioned and moved in the artificial spin ice, the researchers propose using them to design novel logic elements in which magnetic waves will flow instead of electric charges. The monopole structures in these logic elements would have a function similar to a breakwater, which controls the propagation of waves. Using techniques such as lithography, artificial spin-ice materials can be made up of engineered nanoscale areas that are small enough to function as single magnetic elements.

Original publication:
Sebastian Gliga, Attila Kákay, Riccardo Hertel, Olle G. Heinonen; Spectral Analysis of Topological Defects in an Artificial Spin-Ice Lattice; PRL 110, 117205 (2013)

More about Forschungszentrum Jülich
  • News

    Potential future data storage at domain boundaries

    Storing more and more in an ever-smaller space – what sounds impossible is in fact just part of the daily routine in information technology, where for decades, increasing amounts of data have been successfully stored on media with ever higher densities. An international team, including rese ... more

    Tin for faster chips

    To process and save data more and more quickly, to build even smaller and more powerful chips: these are the goals pursued by numerous research teams around the world. For some years now, one special material class has been at the heart of their efforts, so-called topological insulators. Wi ... more

    How the detergent of the atmosphere is regenerated

    Hydroxyl (OH) radicals – known as the detergent of the atmosphere – decompose isoprene in the air. This leads to the creation of new OH radicals, which are then able to purify the air of other pollutants and trace gases. The scientific community had previously only been able to speculate ab ... more

  • Companies

    Forschungszentrum Jülich GmbH, Projektträger Jülich

    Supporting the Federal Ministry of Education and Research (BMBF), Economics and Technology (BMWA), Environment (BMU) and several Federal States in funding of research. more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE