My watch list
my.chemeurope.com  
Login  

New method for 3-D printing extraterrestrial materials

18-Apr-2017

Northwestern University

Tools and building blocks made by 3D printing with lunar and Martian dust

When humans begin to colonize the moon and Mars, they will need to be able to make everything from small tools to large buildings using the limited surrounding resources.

Northwestern University's Ramille Shah and her Tissue Engineering and Additive Manufacturing (TEAM) Laboratory have demonstrated the ability to 3D-print structures with simulants of Martian and lunar dust. This work uses an extension of their "3D-painting process," a term that Shah and her team use for their novel 3D inks and printing method, which they previously employed to print hyperelastic "bone", 3D graphene and carbon nanotubes, and metals and alloys.

"For places like other planets and moons, where resources are limited, people would need to use what is available on that planet in order to live," said Shah, assistant professor of materials science and engineering at Northwestern's McCormick School of Engineering and of surgery in the Feinberg School of Medicine. "Our 3D paints really open up the ability to print different functional or structural objects to make habitats beyond Earth."

The research was partially supported by a gift from Google and performed at Northwestern's Simpson Querrey Institute.

Shah's research uses NASA-approved lunar and Martian dust simulants, which have similar compositions, particle shapes, and sizes to the dusts found on lunar and Martian surfaces. Shah's team created the lunar and Martian 3D paints using the respective dusts, a series of simple solvents, and biopolymer, then 3D printed them with a simple extrusion process. The resulting structures are over 90 percent dust by weight.

Despite being made of rigid micro-rocks, the resulting 3D-painted material is flexible, elastic, and tough -- similar to rubber. This is the first example of rubber-like or soft materials resulting from lunar and Martian simulant materials. The material can be cut, rolled, folded, and otherwise shaped after being 3D painted, if desired.

"We even 3D-printed interlocking bricks, similar to Legos, that can be used as building blocks," Shah said.

Shah and David Dunand, the James N. and Margie M. Krebs Professor of Materials Science and Engineering, are currently collaborating to optimize ways to fire these 3D-painted structures in a furnace, which is an optional process that can transform the soft, rubbery objects into hard, ceramic-like structures. In the context of the broader 3D-painting technology, this work highlights the potential to use a single 3D printer on another planet to create structures from all kinds of materials.

Even though colonizing other planets might take a while, Shah believes that it's never too soon to start planning.

Facts, background information, dossiers
More about Northwestern University
  • News

    Understanding rare earth emulsions

    Despite their name, rare earth elements actually aren't that rare. Abundant in mines around the world, rare earths are used in many high-tech products, including visual displays, batteries, super conductors, and computer hard drives. But while they aren't necessarily tricky to find, the ele ... more

    Simultaneous design and nanomanufacturing speeds up fabrication

    Design and nanomanufacturing have collided inside of a Northwestern University laboratory. An interdisciplinary team of researchers has used mathematics and machine learning to design an optimal material for light management in solar cells, then fabricated the nanostructured surfaces simult ... more

    Tiny particles increase in air with ethanol-to-gasoline switch

    The concentration of ultrafine particles less than 50 nanometers in diameter rose by one-third in the air of São Paulo, Brazil, when higher ethanol prices induced drivers to switch from ethanol to gasoline, according to a new study by a Northwestern University chemist, a National University ... more

  • Videos

    Light-Powered 3-D Printer Prints Stent

    The 3-D printer in Cheng Sun’s lab allows researchers to fabricate materials that precisely fit their designs. It uses a photo-polymer in liquid form that coverts into a solid when light is applied. The material actually forms to the shape of the projected light, creating a 3-D structure. more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE