My watch list
my.chemeurope.com  
Login  

Making batteries from waste glass bottles

Researchers are turning glass bottles into high performance lithium-ion batteries

21-Apr-2017

UC Riverside

Waste glass bottles are turned into nanosilicon anodes using a low cost chemical process.

Researchers at the University of California, Riverside's Bourns College of Engineering have used waste glass bottles and a low-cost chemical process to create nanosilicon anodes for high-performance lithium-ion batteries. The batteries will extend the range of electric vehicles and plug-in hybrid electric vehicles, and provide more power with fewer charges to personal electronics like cell phones and laptops.

Even with today's recycling programs, billions of glass bottles end up in landfills every year, prompting the researchers to ask whether silicon dioxide in waste beverage bottles could provide high purity silicon nanoparticles for lithium-ion batteries.

Silicon anodes can store up to 10 times more energy than conventional graphite anodes, but expansion and shrinkage during charge and discharge make them unstable. Downsizing silicon to the nanoscale has been shown to reduce this problem, and by combining an abundant and relatively pure form of silicon dioxide and a low-cost chemical reaction, the researchers created lithium-ion half-cell batteries that store almost four times more energy than conventional graphite anodes.

To create the anodes, the team used a three-step process that involved crushing and grinding the glass bottles into a fine white power, a magnesiothermic reduction to transform the silicon dioxide into nanostructured silicon, and coating the silicon nanoparticles with carbon to improve their stability and energy storage properties.

As expected, coin cell batteries made using the glass bottle-based silicon anodes greatly outperformed traditional batteries in laboratory tests. Carbon-coated glass derived-silicon (gSi@C) electrodes demonstrated excellent electrochemical performance with a capacity of ~1420 mAh/g at C/2 rate after 400 cycles.

Changling Li, a graduate student in materials science and engineering, said one glass bottle provides enough nanosilicon for hundreds of coin cell batteries or three-five pouch cell batteries.

"We started with a waste product that was headed for the landfill and created batteries that stored more energy, charged faster, and were more stable than commercial coin cell batteries. Hence, we have very promising candidates for next-generation lithium-ion batteries," Li said.

This research is the latest in a series of projects led by Mihri and Cengiz Ozkan to create lithium-ion battery anodes from environmentally friendly materials. Previous research has focused on developing and testing anodes from portabella mushrooms, sand, and diatomaceous (fossil-rich) earth.

Facts, background information, dossiers
  • anodes
  • nanosilicon
More about UC Riverside
  • News

    Physics, photosynthesis and solar cells

    A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient. Nathan Gabor is focused on experimental condensed matter physics, and uses light to probe the fundamental laws of quantu ... more

    Nuclear puzzle may be clue to fifth force

    In a new paper, University of California, Riverside theoretical physicist Flip Tanedo and his collaborators have made new progress towards unravelling a mystery in the beryllium nucleus that may be evidence for a fifth force of nature. Earlier this year, an experiment in Hungary reported ve ... more

    Integrated trio of 2-D nanomaterials unlocks graphene electronics applications

    Graphene has emerged as one of the most promising two-dimensional crystals, but the future of electronics may include two other nanomaterials, according to a new study by researchers at the University of California, Riverside and the University of Georgia. In research the researchers descri ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE