My watch list
my.chemeurope.com  
Login  

The spin in graphene can be switched off

06-Jul-2017

Chalmers University

The experiment setup consists of a heterostructure of graphene and molybdenum disulphide; a spintronic device. By applying a gate voltage, it is possible to control whether the current that passes will include any spin signal or not.

By combining graphene with another two-dimensional material, researchers at Chalmers University of Technology have created a prototype of a transistor-like device for future computers, based on what is known as spintronics. Spin as the information carrier can result in electronics that are significantly faster and more energy efficient. It can also lead to more versatile components capable of both data calculation and storage.

Just over two years ago, the same research group at Chalmers University of Technology demonstrated that graphene, which is an excellent electrical conductor, also has unsurpassed spintronic properties.

The super-thin carbon mesh proved capable of conveying electrons with coordinated spin over longer distances and preserving the spin for a longer time than any other known material at room temperature.

Although the distance is still on the scale of a few micrometres and the time is still measured in nanoseconds, this in principle opened the door to the possibility of using spin in microelectronic components.

“But, it is not enough to have a good motorway for the spin signal to travel on. You also need traffic lights so the signal can be controlled,” says Associate Professor Saroj Dash, leader of the research group.

“Our new challenge became finding a material that can both convey and control the spin. It is hard, since both tasks normally require completely opposite material properties,” he explains.

Like many other researchers in the hot field of graphene, the Chalmers researchers therefore chose to test a combination of graphene and another thin, so-called two-dimensional material, with contrasting spintronic properties.

"Our material of choice was molybdenum disulphide, MoS2, due to its low spin lifetime steaming from high spin-orbit coupling," states André Dankert, postdoc researcher in the group.

André Dankert and Saroj Dash designed an experiment where a few layers of molybdenum disulphide were placed on top of a layer of graphene in a type of sandwich, referred to as a heterostructure. With this, they could identify in detail what happens to the spin signal when the electron current reaches the heterostructure:

“Firstly, the magnitude of the spin signal and lifetime in graphene is reduced tenfold just through the close contact with molybdenum disulphide. But, we also show how one can control the signal and lifetime by applying electrical gate voltage across the heterostructure,” explains Saroj Dash.

This is because the natural energy barrier that exists between the material layers, called the Schottky barrier, reduces when the electrical voltage is applied. With this, the electrons can quantum mechanically tunnel from the graphene into the molybdenum disulphide. This causes spin polarisation to disappear; the spin becomes randomly distributed.

Opening or closing a “valve” in this manner by regulating a voltage is similar to how a transistor works in conventional electronics. Nonetheless, Saroj Dash is a little hesitant to call the device a spin transistor.

“When researchers proposed on future spin transistors, they often imagined something based on semiconductor technology and so called coherent manipulation of electron spin. What we have done works in a completely different way, but performs a similar switching task,” he says.

“This is the first time that anyone has been able to demonstrate that the gate control of spin current and spin lifetime works at room temperature – which naturally increases the possibilities for different applications in the future,” says Saroj Dash.

Although it is too early to predict what these would be, Dash points out that a component based on this principle might be extremely versatile because it contains magnetic memory elements, semiconductors and graphene, as well as having the capability of performing spintronic switching.

“It points to a multifunctional component that can handle both data storage and processor work – in a single unit.”

Facts, background information, dossiers
  • 2D materials
  • Schottky barrier
  • spin polarisation
  • microelectronics
  • layered materials
More about Chalmers University of Technology
  • News

    Optical fingerprint can reveal pollutants in the air

    More efficient sensors are needed to be able to detect environmental pollution. Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials. The novel method could improve environmental sens ... more

    Cooling graphene-based film close to pilot-scale production

    Heat dissipation in electronics and optoelectronics is a severe bottleneck in the further development of systems in these fields. To come to grips with this serious issue, researchers at Chalmers University of Technology have developed an efficient way of cooling electronics by using functi ... more

    Breakthrough for magnesium lightweight materials

    By changing the microstructure in magnesium alloys, Mohsen Esmaily, researcher in Atmospheric Corrosion at Chalmers University of Technology, has succeeded in improving possibilities for the transport sector to use these materials to decrease the weight of vehicles. Magnesium is the lightes ... more

  • Events
    Conference
    17-09 – 21-09
    2017
    Gothenburg, SE

    European Conference on Optical Communications

    ECOC is the largest conference on optical communication in Europe, and one of the most prestigious and long-standing events in this field worldwide. In September 2017 the 43rd edition of ECOC will take place in Gothenburg, Sweden. This event will showcase state of the art results which brid ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE