My watch list  

Atomic de Broglie microscope




The atomic de Broglie microscope (also atomic nanoscope, neutral beam microscope, or scanning helium microscope when helium is used as the probing atom) is an imaging system which is expected to provide resolution at the nanometer scale.


The resolution of optical microscopes is limited to a few hundred nanometers by the wave properties of the light.

The idea of imaging with atoms instead of light is widely discussed in the literature [2][3][4][5][6] since the past century. Atom optics using neutral atoms instead of light could provide resolution as good as the electron microscope and be completely non-destructive, because short wavelengths on the order of a nanometer can be realized at low energy of the probing particles. "It follows that a helium microscope with nanometer resolution is possible. A helium atom microscope will be [a] unique non-destructive tool for reflection of transmission microscopy." -- Holst et al., An atom-focusing mirror. Nature, v.390, p.244 (1997) [5].

Focusing of neutral atoms

Currently, the atom-optic imaging systems are not competitive with electron microscopy and various methods of near-field probe. The main problem in the optics of atomic beams for an imaging system is the focusing element. There is no material transparent to the beam of low-energy atoms. A Fresnel zone plate [6] and evanescent field lens [7] were suggested, as well as various atomic mirrors [8][9][10]. Such mirrors use the quantum reflection by Casimir–van der Waals potential tails [11].

Ridged mirrors

Recently, the performance of solid-state atomic mirrors was greatly enhanced with so-called ridged mirrors (or Fresnel diffraction mirrors) [12][13][14][15][16]. The specular reflection of an atomic wave from a ridged mirror can be interpreted as spatial Zeno effect[14]. At the appropriate ellipsoidal profile, such a mirror could be used for focusing of an atomic beam into a spot of some tens of nanometers [1]; the scattering of atoms from this spot brings the image of the object, like in the scanning confocal microscope, scanning electron microscope, or scanning probe microscopy.

The scheme shown in the picture is one of options. Similar scheme is posted at the homepage of the University of Cambridge [17]; see an additional list of reference there. Such an imaging system could also be realized with holographic, Fresnel diffraction, and evanescent wave systems. Some of such systems may become competitive with established methods of visualization and measuring of nano-objects. See the overview at Nanowiki (Nanotechnology).

See also

  • Atom optics
  • Atomic mirror
  • Quantum reflection
  • Ridged mirror
  • Grazing angle
  • Zeno effect
  • De Broglie hypothesis


  1. ^ a b D.Kouznetsov; H. Oberst, K. Shimizu, A. Neumann, Y. Kuznetsova, J.-F. Bisson, K. Ueda, S. R. J. Brueck (2006). "Ridged atomic mirrors and atomic nanoscope". JOPB 39: 1605-1623.
  2. ^ B.Poelsema; G.Comsa (1989). "Scattering of thermal energy atoms for disordered surfaces". Springer-Verlag: viii,108.
  3. ^ E.Hulpke (editor) (1992). "Helium Atom Scattering from Surfaces". Springer Series in Surface Sciences: 323.
  4. ^ J. J. Berkhout; O. J.Luiten, I.D.Setija, T.W.Hijmans, T.Mizusaki, and J.T.M.Walraven (1989). "Quantum reflection: Focusing of hydrogen atoms with a concave mirror". PRL 63: 1689-1692.
  5. ^ a b Bodil Holst; William Allison (1997). "An atom-focusing mirror". Nature 390: 244.
  6. ^ a b R.B.Doak; R.E.Grisenti, S.Rehbein, G.Schmahl, J.P.Toennies2, and Ch. Wöll (1999). "Towards Realization of an Atomic de Broglie Microscope: Helium Atom Focusing Using Fresnel Zone Plates". PRL 83: 4229-4232.
  7. ^ V.Balykin; V.Klimov, V.Letokhov (2005). "Atom Nano-Optics". Optics and Photonics News 16: 44-48.
  8. ^ F. Shimizu (2000). "Specular Reflection of Very Slow Metastable Neon Atoms from a Solid Surface". PRL 86: 987-990.
  9. ^ H.Oberst; S.Kasashima, V.I.Balykin, F.Shimizu (2003). "Atomic-matter-wave scanner". PRA 68: 013606.
  10. ^ H.Oberst; Y.Tashiro, K.Shimizu, F.Shimizu (2005). "Quantum reflection of He* on silicon". PRA 71: 052901.
  11. ^ H.Friedrich; G.Jacoby, C.G.Meister (2002). "quantum reflection by Casimir–van der Waals potential tails". PRA 65.
  12. ^ F.Shimizu; J. Fujita (2002). "Giant Quantum Reflection of Neon Atoms from a Ridged Silicon Surface". Journal of the Physical Society of Japan 71: 5-8.
  13. ^ Shimizu; J.Fujita (2002). "Reflection-Type Hologram for Atoms". PRL 88: 123201. American Physical Society. doi:10.1103/PhysRevLett.88.123201.
  14. ^ a b D.Kouznetsov; H.Oberst (2005). "Reflection of Waves from a Ridged Surface and the Zeno Effect". Optical Review 12: 1605-1623.
  15. ^ D.Kouznetsov; H.Oberst (2005). "Scattering of waves at ridged mirrors.". PRA 72: 013617.
  16. ^ H.Oberst; D.Kouznetsov, K.Shimizu, J.Fujita, and F. Shimizu (2005). "Fresnel Diffraction Mirror for an Atomic Wave". PRL 94: 013203.
  17. ^ Atom Optics and Helium Atom Microscopy. Cambridge University,
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Atomic_de_Broglie_microscope". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE