To use all functions of this page, please activate cookies in your browser.

my.chemeurope.com

With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.

- My watch list
- My saved searches
- My saved topics
- My newsletter

## Bohm diffusion
- ,
## Additional recommended knowledgewhere It was first observed in 1946 by David Bohm, E. H. S. Burhop, and Harrie Massey while studying magnetic arcs for use in isotope separation. It has since been observed that many other plasmas follow this law. Fortunately there are exceptions where the diffusion rate is lower, otherwise there would be no hope of achieving practical fusion energy. Generally diffusion can be modelled as a random walk of steps of length δ and time τ. If the diffusion is collisional, then δ is the mean free path and τ is the inverse of the collision frequency. The diffusion coefficient where In a magnetized plasma, the collision frequency is usually small compared to the gyrofrequency, so that the step size is the gyroradius ρ and the step time is the inverse of the collision frequency ν, leading to In the common low collisionality regime, classical diffusion scales with 1/ In light of the calculation above, it is tempting to think of Bohm diffusion as classical diffusion with an anomalous collision rate that maximizes the transport, but the physical picture is different. Anomalous diffusion is the result of turbulence. Regions of higher or lower electric potential result in eddies because the plasma moves around them with the E-cross-B drift velocity equal to Categories: Diffusion | Plasma physics |

This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Bohm_diffusion". A list of authors is available in Wikipedia. |