My watch list
my.chemeurope.com  
Login  

Ester




 

 

Esters are a class of chemical compounds and functional groups. Esters consist of an inorganic or organic acid in which at least one -OH (hydroxy) group is replaced by an -O-alkyl (alkoxy) group. The most common type of esters are carboxylic acid esters (R1-C(=O)-O-R2); other esters include phosphoric acid, sulfuric acid, nitric acid, and boric acid esters. Volatile esters often have a smell and are found in perfumes, essential oils, and pheromones, and give many fruits their scent. Ethyl acetate and methyl acetate are important solvents; fatty acid esters form fat and lipids; and polyesters are important plastics. Cyclic esters are called lactones. The name "ester" is derived from the German Essig-Äther (literally: vinegar ether), an old name for ethyl acetate. Esters can be synthesized in a condensation reaction between an acid and an alcohol in a reaction known as esterification.

Additional recommended knowledge

Contents

Nomenclature

An ester is named according to the two parts that make it up: the part from the alcohol and the part from the acid (in that order), for example ethyl sulfuric acid ester.

Since most esters are derived from carboxylic acids, a specific nomenclature is used for them. For esters derived from the simplest carboxylic acids, the traditional name for the acid constituent is generally retained, e.g., formate, acetate, propionate, butyrate.[1] For esters from more complex carboxylic acids, the systematic name for the acid is used, followed by the suffix -oate. For example, methyl formate is the ester of methanol and methanoic acid (formic acid): the simplest ester. It could also be called methyl methanoate.[2]


Esters of aromatic acids are also encountered, including benzoates such as methyl benzoate, and phthalates, with substitution allowed in the name.

Physical properties

Esters participate in hydrogen bonds as hydrogen-bond acceptors, but cannot act as hydrogen-bond donors, unlike their parent alcohols. This ability to participate in hydrogen bonding makes them more water-soluble than their parent hydrocarbons. However, the limitations on their hydrogen bonding also make them more hydrophobic than either their parent alcohols or their parent acids. Their lack of hydrogen-bond-donating ability means that ester molecules cannot hydrogen-bond to each other, which, in general, makes esters more volatile than a carboxylic acid of similar molecular weight. This property makes them very useful in organic analytical chemistry: Unknown organic acids with low volatility can often be esterified into a volatile ester, which can then be analyzed using gas chromatography, gas liquid chromatography, or mass spectrometry. Many esters have distinctive odors, which has led to their use as artificial flavorings and fragrances. For example:

Ester Name Molar Mass
(g/mol)
Structure Odor or Occurrence
Allyl hexanoate 156.22 pineapple
Benzyl acetate 150.18 1 1 0 pear, strawberry, jasmine
Bornyl acetate 196.29 pine tree flavor
Butyl butyrate 144.21 2 2 0 pineapple
Ethyl acetate 88.12 1 3 0 nail polish remover, model paint, model airplane glue
Ethyl butyrate 116.16 1 2 0 banana, pineapple, strawberry
Ethyl hexanoate 144.21 strawberry
Ethyl cinnamate 176.21 cinnamon
Ethyl formate 74.08 lemon, rum, strawberry
Ethyl heptanoate 158.27 apricot, cherry, grape, raspberry
Ethyl isovalerate 130.18 apple
Ethyl lactate 118.13 1 1 0 butter, cream
Ethyl nonanoate 186.29 grape
Ethyl pentanoate 130.18 1 3 0 apple
Geranyl acetate 196.29 0 1 0 geranium
Geranyl butyrate 224.34 cherry
Geranyl pentanoate 238.37 apple
Isobutyl acetate 116.16 1 3 0 cherry, raspberry, strawberry
Isobutyl formate 102.13 raspberries
Isoamyl acetate 130.19 pear, banana (flavoring in Pear drops)
Isopropyl acetate 102.1 1 3 0 fruity
Linalyl acetate 196.29 lavender, sage
Linalyl butyrate 224.34 peach
Linalyl formate 182.26 apple, peach
Methyl acetate 74.08 1 3 0 peppermint
Methyl anthranilate 151.165 grape, jasmine
Methyl benzoate 136.15 0 2 0 fruity, ylang ylang, feijoa
Methyl benzyl acetate 164.20 cherry
Methyl butyrate 102.13 1 3 0 pineapple, apple
Methyl cinnamate 162.185 strawberry
Methyl pentanoate 116.16 flowery
Methyl phenyl acetate 150.17 honey
Methyl salicylate (oil of wintergreen) 152.1494 root beer, wintergreen, Germolene™ and Ralgex™ ointments (UK)
Nonyl caprylate 270.26 orange
Octyl acetate 172.27 fruity-orange
Octyl butyrate 200.32 parsnip
Amyl acetate (pentyl acetate) 130.19 apple, banana
Pentyl butyrate (amyl butyrate) 158.24 apricot, pear, pineapple
Pentyl hexanoate (amyl caproate) 186.29 apple, pineapple
Pentyl pentanoate (amyl valerate) 172.15 apple
Propyl ethanoate 102.13 pear
Propyl isobutyrate 130.18 rum
Terpenyl butyrate cherry

Ester synthesis

"Esterification" (condensation of an alcohol and an acid) is not the only way to synthesize an ester. Esters can be prepared in the laboratory in a number of other ways:

Ester reactions

  Esters react in a number of ways:

References

  1. ^ IUPAC parent groups using traditional names
  2. ^ IUPAC naming of esters
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Ester". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE