My watch list
my.chemeurope.com  
Login  

Mass flow sensor



A mass flow sensor responds to the amount of a fluid (usually a gas) flowing through a chamber containing the sensor. It is intended to be insensitive to the density of the fluid.

Additional recommended knowledge

Contents

Automotive mass airflow sensors

A mass airflow sensor is used to determine the mass of air entering an electronically fuel-injected engine. The air mass information is necessary for the engine control unit (ECU) to calculate and deliver the correct fuel mass to the engine. Air changes its density as it expands and contracts with temperature and pressure. In automotive applications, air density varies with the ambient temperature and altitude, and this is an ideal application for a mass sensor. (See stoichiometry and ideal gas law.)

There are two common types of mass airflow sensors in usage on gasoline engines. These are the vane meter and the hot wire. Neither design employs technology that measures air mass directly. However, with an additional sensor or two, the engine's air mass flow rate can be accurately determined.

Both approaches are used almost exclusively on electronic fuel injection (EFI) engines. Both sensor designs output a 0 - 5.0 volt signal that is proportional to the air mass flow rate, and both sensors have an intake air temperature (IAT) sensor incorporated into their housings.

When a MAF is used in conjunction with an oxygen sensor, the engine's air/fuel ratio can be controlled very accurately. The MAF sensor provides the open-loop predicted air flow information (the measured air flow) to the ECU, and the sensor provides closed-loop feedback in order to make minor corrections to the predicted air mass. Also see MAP sensor.

Vane meter sensor

A vane, or paddle, projects into the engine’s intake air stream on a spring-loaded arm. The vane moves in proportion to the airflow, and a voltage is generated in proportion to the distance the vane moves. The vane measures air volume, not mass, however by measuring the air temperature and pressure to determine air density, a true mass airflow calculation can be achieved. See ideal gas law.

The vane meter approach has some drawbacks:

  • it restricts airflow which limits engine output
  • its moving electrical contacts can wear
  • finding a suitable mounting location within a confined engine compartment is problematic
  • the vane has to be oriented with respect to gravity

Hot wire sensor (MAF)

A hot wire mass airflow sensor determines the mass of air flowing into the engine’s air intake system. This is achieved by heating a wire with an electric current that is suspended in the engine’s air stream, not unlike a toaster wire. The wire's temperature increases with the wire’s electrical resistance, which limits electrical current flowing through the circuit. When air flows past the wire, the wire cools decreasing its resistance, which in turn allows more current to flow through the circuit. As more current flows, the wire’s temperature increases until the resistance reaches equilibrium again. The amount of current required to maintain the wire’s electrical resistance is directly proportional to the mass of air flowing past the wire. The integrated electronic circuit converts the measurement of current into a voltage signal which is sent to the ECU.

If air density increases due to pressure increase or temperature drop, but the air volume remains constant, the denser air will remove more heat from the wire indicating a higher mass airflow. Unlike the vane meter's paddle sensing element, the hot wire responds directly to air density. This sensor's capabilities are well suited to support the gasoline combustion process which fundamentally responds to air mass, not air volume. (See stoichiometry.)

Some of the benefits of a hot-wire MAF compared to the older style vane meter are:

  • responds very quickly to changes in air flow
  • low airflow restriction
  • smaller overall package
  • less sensitive to mounting location and orientation
  • no moving parts improve its durability
  • less expensive
  • separate temperature and pressure sensors are not required (to determine air mass)

There are some drawbacks:

  • dirt and oil can contaminate the hot-wire deteriorating its accuracy
  • installation requires a laminar flow across the hot-wire

"Coldwire" sensor

 

LS1 and onwards engines (as well as others) use a "coldwire" MAF system (produced by AC Delco) where by the air passing over a tiny sensor causes inductance, this inductance is converted to a frequency which is then fed to the car's ECU. This frequency is related to the amount of air (CFM) passing over the unit, these MAF units (such as the one pictured) have 3 pins, +, - and F, the F contains the square-wave frequency between - and F.

The mesh on the MAF is used to smooth out airflow to ensure the sensors have the best chance of a steady reading. It is not used for measuring the air flow per se and it is not recommended that you "clean" these units other than ensuring the wire-mesh is completely flat and free of any debris. Manufacturers claim that a simple but extremely reliable test to ensure correct functionality is to tap the unit with the back of a screwdriver while the car is running, and if this causes any changes in the output frequency then the unit should be discarded and an OEM replacement installed.

Membrane sensor

An emerging technology utilizes a very thin electronic membrane placed in the air stream. The membrane has a thin film temperature sensor printed on the upstream side, and one on the downstream side. A heater is integrated in the center of the membrane which maintains a constant temperature similar to the hot-wire approach. Without any airflow, the temperature profile across the membrane is uniform. When air flows across the membrane, the upstream side cools differently than the downstream side. The difference between the upstream and downstream temperature indicates the mass airflow. The thermal membrane sensor is also capable of measuring flow in both directions, which sometimes occur in pulsating situations. Technological progress allows this kind of sensor to be manufactured on the microscopic scale as microsensors using MEMS technology. Such a microsensor reaches a significantly higher speed and sensitivity compared with macroscopic approaches. See also MEMS sensor generations.

Manufacturers

Automotive air measurement sensors are manufactured by Siemens VDO, Sensata Technologies, Bosch, Denso, Visteon, Delphi, AC Delco, Hitachi, Pierburg and several others.

 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Mass_flow_sensor". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE