My watch list  

Primary production

See also: Primary production (economics)


Primary production is the production of organic compounds from atmospheric or aquatic carbon dioxide, principally through the process of photosynthesis, with chemosynthesis being much less important. All life on earth is directly or indirectly reliant on primary production. The organisms responsible for primary production are known as primary producers or autotrophs, and form the base of the food chain. In terrestrial ecoregions, these are mainly plants, while in aquatic ecoregions algae are primarily responsible. Primary production is distinguished as either net or gross, the former accounting for losses to processes such as cellular respiration, the latter not.



  At the fundamental level, primary production is the conversion of energy in the form of electromagnetic radiation into stored chemical energy by living organisms. The main source of this energy is the sun. A minute fraction of primary production is driven by organisms utilising the chemical energy of inorganic molecules.

Regardless of its source, this energy is used to synthesise complex organic molecules from simpler inorganic compounds such as carbon dioxide (CO2) and water (H2O). The following two equations are simplified representations of photosynthesis (top) and (one form of) chemosynthesis (bottom) :

CO2 + H2O + light \rightarrow CH2O + O2
CO2 + O2 + 4 H2S \rightarrow CH2O + 4 S + 3 H2O

In both cases, the end point is reduced carbohydrate (CH2O), typically molecules such as glucose or other sugars. These relatively simple molecules may be then used to synthesise further more complicated molecules, including proteins, complex carbohydrates, lipids, and nucleic acids, or be respired to perform work. Consumption of primary producers by heterotrophic organisms, such as animals, then transfers these organic molecules (and the energy stored within them) up the food chain, fueling all of the Earth's living systems.


Gross primary production (GPP) is the total amount of energy fixed by primary producers in a given area or ecosystem. Some fraction of this fixed energy is used by primary producers for cellular respiration and maintenance of existing tissues. The remaining fixed energy is referred to as net primary production (NPP). Net primary production is the rate at which new biomass accrues in an ecosystem. Some net primary production will go towards growth and reproduction of primary producers, while some will be consumed by herbivores. Both gross and net primary production are in units of mass / area / time. In terrestrial ecosystems, the mass of carbon per unit area per year (g C/m2/yr) is most often used.

Terrestrial production

  On the land, almost all primary production is now performed by vascular plants, although a small fraction comes from algae and non-vascular plants such as mosses and liverworts. However, before the evolution of vascular plants, non-vascular plants played a more significant role. Primary production on land is a function of many factors, but principally local hydrology and temperature (the latter covaries to an extent with light, the source of energy for photosynthesis). While plants cover much of the Earth's surface, they are strongly curtailed wherever temperatures are too extreme or where necessary plant resources (principally water and light) are limiting, such as deserts or polar regions.

Water is "consumed" in plants by the processes of photosynthesis (see above) and transpiration. The latter process (which is responsible for about 90% of water use) is driven by the evaporation of water from the leaves of plants. It allows plants to transport water and mineral nutrients from the soil to growth regions, and also cools a plant down. It can be regulated by structures known as stomata, but these also regulate the supply of carbon dioxide from the atmosphere, so that decreasing water loss also decreases carbon dioxide gain. Crassulacean acid metabolism (CAM) and C4 plants use physiological and anatomical workarounds to increase their water-use efficiency and allow increased primary production to take place under conditions that would limit "normal" C3 plants (the majority of plant species).

Oceanic production

  In a reversal of the pattern on land, in the oceans, almost all primary production is performed by algae, with a small fraction contributed by vascular plants and other groups. Algae encompass a diverse range of organisms, ranging from single floating cells to attached seaweeds. They include photoautotrophs from a variety of groups: prokaryotic bacteria (both eubacteria and archaea); and three eukaryote categories the green, brown and red algae. Vascular plants are represented in the ocean by groups such as the seagrasses.

In another departure from the situation on land, the majority of primary production in the ocean is performed by microscopic organisms, the phytoplankton. Larger autotrophs, such as the seagrasses and macroalgal seaweeds are generally confined to the littoral zone and adjacent shallow waters, where they can attach to the underlying substrate but still be within the photic zone. There are exceptions, such as Sargassum, but the vast majority of free-floating production takes place within microscopic organisms.

The factors limiting primary production in the ocean are also very different from those on land. The availability of water, obviously, is not an issue (though its salinity can be). Similarly, temperature, while affecting metabolic rates (see Q10), ranges less widely in the ocean than on land because the heat capacity of seawater buffers temperature changes, and the formation of sea ice insulates it at lower temperatures. However, the availability of light, the source of energy for photosynthesis, and mineral nutrients, the building blocks for new growth, play crucial roles in regulating primary production in the ocean.


  The sunlit zone of the ocean is called the photic zone (or euphotic zone). This is a relatively thin layer (10-100 m) near the ocean's surface where there is sufficient light for photosynthesis to occur. For practical purposes, the thickness of the photic zone is typically defined by the depth at which light reaches 1% of its surface value. Light is attenuated down the water column by its absorption or scattering by the water itself, and by dissolved or particulate material within it (including phytoplankton).

Net photosynthesis in the water column is determined by the interaction between the photic zone and the mixed layer. Turbulent mixing by wind energy at the ocean's surface homogenises the water column vertically until the turbulence dissipates (creating the aforementioned mixed layer). The deeper the mixed layer, the lower the average amount of light intercepted by phytoplankton within it. The mixed layer can vary from being shallower than the photic zone, to being much deeper than the photic zone. When it is much deeper than the photic zone, this results in phytoplankton spending too much time in the dark for net growth to occur. The maximum depth of the mixed layer in which net growth can occur is called the critical depth. As long as there are adequate nutrients available, net primary production occurs whenever the mixed layer is shallower than the critical depth.

Both the magnitude of wind mixing and the availability of light at the ocean's surface are affected across a range of space- and time-scales. The most characteristic of these is the seasonal cycle (caused by the consequences of the Earth's axial tilt), although wind magnitudes additionally have strong spatial components. Consequently, primary production in temperate regions such as the North Atlantic is highly seasonal, varying with both incident light at the water's surface (reduced in winter) and the degree of mixing (increased in winter). In tropical regions, such as the gyres in the middle of the major basins, light may only vary slightly across the year, and mixing may only occur episodically, such as during large storms or hurricanes.


  Mixing also plays an important role in the limitation of primary production by nutrients. Inorganic nutrients, such as nitrate, phosphate and silicic acid are necessary for phytoplankton to synthesise their cells and cellular machinery. Because of gravitational sinking of particulate material (such as plankton, dead or faecal material), nutrients are constantly lost from the photic zone, and are only replenished by mixing or upwelling of deeper water. This is exacerbated where summertime solar heating and reduced winds increases vertical stratification and leads to a strong thermocline, since this makes it more difficult for wind mixing to entrain deeper water. Consequently, between mixing events, primary production (and the resulting processes that leads to sinking particulate material) constantly acts to consume nutrients in the mixed layer, and in many regions this leads to nutrient exhaustion and decreased mixed layer production in the summer (even in the presence of abundant light). However, as long as the photic zone is deep enough, primary production may continue below the mixed layer where light-limited growth rates mean that nutrients are often more abundant.


Another factor relatively recently discovered to play a significant role in oceanic primary production is the micronutrient iron[1]. This is used as a cofactor in enzymes involved in processes such as nitrate reduction and nitrogen fixation. A major source of iron to the oceans is dust from the Earth's deserts, picked up and delivered by the wind as eolian dust. In regions of the ocean that are distant from deserts or that are not reached by dust-carrying winds (for example, the Southern and North Pacific oceans), the lack of iron can severely limit the amount of primary production that can occur. These areas are sometimes known as HNLC (High-Nutrient, Low-Chlorophyll) regions, because the scarcity of iron both limits phytoplankton growth and leaves a surplus of other nutrients.

Human impact and appropriation

Extensive human land use results in various levels of impact on actual NPP (NPPact). In a few regions, such as the Nile valley, irrigation has resulted in a considerable increase in primary production. This is an exception to the rule, which is that there is a NPP reduction due to land changes (ΔNPPLC) of 9.6% across global land-mass. In addition to this, end consumption by people raises the total human appropriation of net primary production (HANPP) to 23.8% of potential vegetation (NPP0). This disproportionate amount reduces energy available to other species, having a marked impact on biodiversity, flows of carbon, water and energy, and ecosystem services.[2]


The methods for measurement of primary production vary depending on whether gross vs net production is the desired measure, and whether terrestrial or aquatic systems are the focus. Gross production is almost always harder to measure than net, because of respiration, which is a continuous and ongoing process that consumes some of the products of primary production (i.e. sugars) before they can be accurately measured. Also, terrestrial ecosystems are generally more difficult because a substantial proportion of total productivity is shunted to below-ground organs and tissues, where it is logistically difficult to measure. Shallow water aquatic systems can also face this problem.

Scale also greatly affects measurement techniques. While biochemically-based techniques are appropriate for plant tissues, organs, whole plants, or plankton samples, they are decidedly inappropriate for large scale terrestrial field situations. There, net primary production is almost always the desired variable, and estimation techniques involve various methods of estimating dry-weight biomass changes over time. Biomass estimates are often converted to an energy measure, such as kilocalories, by an empirically determined conversion factor.


In terrestrial ecosystems, researchers generally measure net primary production. A variety of field methods are used to estimate NPP. Although its definition is straightforward, field measurements used to estimate productivity vary according to investigator and biome. Field estimates rarely account for below ground productivity, herbivory, decomposition, turnover, litterfall, volatile organic compounds, root exudates, and allocation to symbiotic microorganisms. As discussed[3] [4], biomass based NPP estimates result in underestimation of NPP due to incomplete accounting of these components. However, many field measurements correlate well to NPP. Comprehensive reviews of field methods used to estimate NPP can be found[3], [5].

The major unaccounted for pool is belowground productivity, especially production and turnover of roots. Belowground components of NPP are difficult to measure. BNPP is often estimated based on a ratio of ANPP:BNPP rather than direct measurements.

Grasslands: Most frequently, peak standing biomass is assumed to measure NPP. In systems with persistent standing litter, live biomass is commonly reported. Measures of peak biomass are more reliable in if the system is predominantly annuals, or when perennial, if there was a synchronous phenology driven by a strong seasonal climate. These methods may underestimate ANPP in grasslands by as much as 2 (temperate) to 4 (tropical) fold[4]. Repeated measures of standing live and dead biomass provide more accurate estimates of all grasslands, particularly those with large turnover, rapid decomposition, and interspecific variation in timing of peak biomass. Wetland productivity, e.g.; of marshes and fens, is similarly measured. In Europe, annual mowing makes the annual biomass increment of wetlands evident.

Forests: Methods used to measure forest productivity are more diverse than those of grasslands. Biomass increment based on stand specific allometry plus litterfall is considered a suitable although incomplete accounting of above-ground net primary production (ANPP)[3]. Field measurements used as a proxy for ANPP include annual litterfall, diameter or basal area increment (DBH or BAI), and volume increment.


In aquatic systems, primary production is typically measured using one of three main techniques [6]:

  1. variations in oxygen concentration within a sealed bottle (developed by Gaarder and Gran in 1927)
  2. incorporation of inorganic carbon-14 (in the form of sodium bicarbonate) into organic matter [7] [8]
  3. fluorescence kinetics (technique still a research topic)

The technique developed by Gaarder and Gran uses variations in the concentration of oxygen under different experimental conditions to infer gross primary production. Typically, three identical transparent vessels are filled with sample water and stoppered. The first is analysed immediately and used to determine the initial oxygen concentration; usually this is done by performing a Winkler titration. The other two vessels are incubated, one each in under light and darkened. After a fixed period of time, the experiment ends, and the oxygen concentration in both vessels is measured. As photosynthesis has not taken place in the dark vessel, it provides a measure of respiration. The light vessel permits both photosynthesis and respiration, so provides a measure of net photosynthesis (i.e. oxygen production via photosynthesis subtract oxygen consumption by respiration). Gross primary production is then obtained by subtracting oxygen consumption in the dark vessel from net oxygen production in the light vessel.

The technique of using 14C incorporation (added as labelled Na2CO3) to infer primary production is most commonly used today because it is sensitive, and can be used in all ocean environments. As 14C is radioactive (via beta decay), it is relatively straightforward to measure its incorporation in organic material using devices such as scintillation counters.

Depending upon the incubation time chosen, net or gross primary production can be estimated. Gross primary production is best estimated using relatively short incubation times (1 hour or less), since the loss of incorporated 14C (by respiration and organic material excretion / exudation) will be more limited. Net primary production is the fraction of gross production remaining after these loss processes have consumed some of the fixed carbon.

Loss processes can range between 10-60% of incorporated 14C according to the incubation period, ambient environmental conditions (especially temperature) and the experimental species used. Aside from those caused by the physiology of the experimental subject itself, potential losses due to the activity of consumers also need to be considered. This is particularly true in experiments making use of natural assemblages of microscopic autotrophs, where it is not possible to isolate them from their consumers.


As primary production in the biosphere is an important part of the carbon cycle, estimating it at the global scale is important in Earth system science. However, quantifying primary production at this scale is difficult because of the range of habitats on Earth, and because of the impact of weather events (availability of sunlight, water) on its variability.

Using satellite-derived estimates of the normalised difference vegetation index (NDVI) for terrestrial habitats and sea-surface chlorophyll for the oceans, it is estimated that the total (photoautotrophic) primary production for the Earth was 104.9 Gt C/yr [9]. Of this, 56.4 Gt C/yr (53.8%), was the product of terrestrial organisms, while the remaining 48.5 Gt C/yr, was accounted for by oceanic production.

In areal terms, it was estimated that land production was approximately 426 g C/m2/yr (excluding areas with permanent ice cover), while that for the oceans was 140 g C/m2/yr. Another significant difference between the land and the oceans lies in their standing stocks - while accounting for almost half of total production, oceanic autotrophs only account for about 0.2% of the total biomass.


  1. ^ Martin, J. H. and Fitzwater, S. E. (1988) Iron-deficiency limits phytoplankton growth in the Northeast Pacific Subarctic. Nature 331, 341-343
  2. ^ H. Haberl, et al. (2007). "Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems". Proc. Natl Acad. Sci. USA (online early edition). doi:10.1073/pnas.0704243104.
  3. ^ a b c Clark, D A; Brown, S; Kicklighter, D W; Chambers, J Q; Thomlinson, J R; Ni, J (2001). "Measuring net primary production in forests: Concepts and field methods". Ecological Applications 11: 356-370.
  4. ^ a b Scurlock, J. M. O.; Johnson, K; Olson, R. J. (2002). "Estimating net primary productivity from grassland biomass dynamics measurements". Global Change Biology 8: 736. doi:10.1046/j.1365-2486.2002.00512.x.
  5. ^ Leith, Helmut; Robert Harding Whittaker (1975). Primary Productivity of the Biosphere. New York: Springer-Verlag. ISBN 0387070834. 
  6. ^ Marra, J. (2002), pp. 78-108. In: Williams, P. J. leB., Thomas, D. N., Reynolds, C. S. (Eds.), Phytoplankton Productivity:Carbon Assimilation in Marine and Freshwater Ecosystems. Blackwell, Oxford, UK
  7. ^ Steeman-Nielsen, E. (1951) Measurement of production of organic matter in sea by means of carbon-14. Nature 267, 684–685
  8. ^ Steeman-Nielsen, E. (1952). The use of radioactive carbon (C14) for measuring organic production in the sea. J. Cons. Int. Explor. Mer. 18, 117-140
  9. ^ Field, C. B., Behrenfeld, M. J., Randerson, J. T. and Falkowski, P. (1998) Primary production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science 281, 237-240

See also

This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Primary_production". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE