My watch list
my.chemeurope.com  
Login  

Smokeless powder



 

Smokeless powder is the name given to a number of propellants used in firearms and artillery which produce negligible smoke when fired, unlike the older (Gunpowder) black powder which they replaced.

Types of smokeless powder include Cordite, Ballistite and, historically, Poudre B. They are classified as single-base, double-base or triple-base powders.

Contents

Description

Smokeless powder consists of nitrocellulose (single-base powders), frequently combined with up to 50 percent nitroglycerin (double-base powders), and sometimes nitroglycerin and nitroguanidine (triple-base), corned into small spherical balls or extruded into cylinders or flakes using solvents such as ether. Other minor ingredients, such as stabilizers and ballistic modifiers, are also added. Double-base propellants are common in handgun and rifle ammunition. Triple-base propellants are more common in artillery guns.

The reason that they are smokeless is that the combustion products are mainly gaseous, compared to around 55% solid products for black powder (potassium carbonate, potassium sulfate etc).

Smokeless powder burns only on the surfaces of the granules, flakes or cylinders - described as granules for short. Larger granules burn more slowly, and the burn rate is further controlled by flame-deterrent coatings which retard burning slightly. The intent is to regulate the burn rate so that a more or less constant pressure is exerted on the propelled projectile as long as it is in the barrel so as to obtain the highest velocity. Cannon powder has the largest granules, up to thumb-sized cylinders with seven perforations (one central and the other six in a circle halfway to the outside of the cylinder's end faces). The perforations stabilize the burn rate because as the outside burns inward (thus shrinking the burning surface area) the inside is burning outward (thus increasing the burning surface area, but faster, so as to fill up the increasing volume of barrel presented by the departing projectile). Fast-burning pistol powders are made by extruding shapes with more area such as flakes or by flattening the spherical granules. Drying is usually performed under a vacuum. The solvents are condensed and recycled. The granules are also coated with graphite to prevent static electricity sparks from causing undesired ignitions.

History

Military commanders had been complaining since the Napoleonic Wars about the problems of giving orders on a battlefield that was covered in thick smoke from the gunpowder used by the guns. A major step forward was introduced when guncotton, a nitrocellulose-based material, was first introduced by Christian Friedrich Schönbein in 1846. He also promoted its use as a blasting explosive.

Guncotton was more powerful than gunpowder, but at the same time was somewhat more unstable. This made it unsuitable as a propellant for small firearms: not only was it dangerous under field conditions, but guns that could fire thousands of rounds using gunpowder would be "used up" after only a few hundred with the more powerful guncotton. It did find wide use with artillery. However, within a short time there were a number of massive explosions and fatalities in guncotton factories due to lack of appreciation of its sensitivity and the means of stabilization. Guncotton then went out of use for some twenty years or more until it could be tamed; it was not until the 1880s that it became a viable propellant.

In 1884 Paul Vieille invented a smokeless gunpowder called Poudre B, made from gelatinized guncotton mixed with ether and alcohol. It was passed through rollers to form thin sheets, which were cut into flakes of the desired size. The resulting propellant, today known as pyrocellulose, contains somewhat less nitrogen than guncotton and is less volatile. A particularly good feature of the propellant is that it will not burn unless it is compressed, making it very safe to handle under normal conditions.

Vieille's powder revolutionized the effectiveness of small guns, for several reasons. First, it gave off almost no smoke. After a few shots, a soldier with black powder ammunition would have his view obscured by a huge pall of smoke unless there was a strong wind. Conversely, a sniper or other hidden shooter would not be given away by a cloud of smoke over the firing position. Further, it was three times more powerful than black powder, which gave more power from less powder. The higher muzzle velocity meant a flatter trajectory and therefore more accurate long range fire, out to perhaps 1000 metres in the first smokeless powder rifles. Since less powder was needed to propel a bullet, the cartridge could be made smaller and lighter. This allowed troops to carry more ammunition for the same weight. Also, it would burn even when wet. Black powder ammunition had to be kept dry and was almost always stored and transported in watertight cartridges.

Vielle's powder was used in the Lebel rifle that was immediately introduced by the French Army to exploit its huge benefits over black powder. Other European countries swiftly followed and started using their own versions of Poudre B, the first being Germany and Austria which introduced new weapons in 1888.

Meanwhile, in Great Britain, in 1887, Alfred Nobel developed a smokeless gunpowder called Ballistite. A modified form of this was devised by Sir Frederick Abel and James Dewar which eventually became known as Cordite, leading to a lengthy court battle between Nobel and the other two inventors over alleged British patent infringement. In the USA, in 1890, a patent for smokeless powder was obtained by Hudson Maxim.

These newer propellants were more stable and thus safer to handle than Poudre B, and also more powerful. Today, propellants based on nitrocellulose alone are known as single-base, whereas cordite-like mixtures are known as double-base. A triple-base flashless cordite was also developed, primarily for large naval guns, but also used in battle tank ammunition.

Smokeless powder allowed the development of modern semi- and fully automatic firearms. Burnt blackpowder leaves a thick, heavy fouling which is both hygroscopic and corrosive. Smokeless powder fouling exhibits none of these properties. This makes an autoloading firearm with many moving parts feasible (which would jam or seize under heavy blackpowder fouling).

Single and double-base smokeless powders now make up the vast majority of propellants used in firearms. They are so common that most modern references to "gunpowder" refer to a smokeless powder, particularly when referring to small arms ammunition.

Instability and stabilization

Nitrocellulose deteriorates with time, yielding acidic byproducts. Those byproducts catalyze the further deterioration, increasing its rate. The released heat, in case of bulk storage of the powder, or too large blocks of solid propellant, can cause self-ignition of the material. Single-base nitrocellulose propellants are most susceptible to degradation; double-base and triple-base propellants tend to deteriorate more slowly. To neutralize the decomposition products, which could otherwise cause corrosion of metals of the cartridges and gun barrels, calcium carbonate is added to some formulations.

To prevent buildup of the deterioration products, stabilizers are added. 2-Nitrodiphenylamine is one of the most common stabilizers used. Others are 4-nitrodiphenylamine, N-nitrosodiphenylamine, N-methyl-p-nitroaniline, and diphenylamine. The stabilizers are added in the amount of 0.5-2% of the total amount of the formulation; higher amounts tend to degrade its ballistic properties. The amount of the stabilizer is depleted with time. Propellants in storage should be periodically tested on the remaining amount of stabilizer, as its depletion may lead to autoignition of the propellant.

Smokeless propellant components

The propellant formulations may contain various energetic and auxiliary components:

  • Propellants:
    • Nitrocellulose, an energetic component of most smokeless propellants
    • Nitroglycerin, an energetic component of double-base and triple-base formulations
    • Nitroguanidine, a component of triple-base formulations
  • Plasticizers, to make the grains less brittle
    • Dibutyl phthalate
    • Polyester adipate
    • Dinitrotoluene (toxic, carcinogen, obsoleted)
  • Binders, to hold the grain shape
  • Stabilizers, to prevent or slow down self-decomposition
    • Diphenylamine
    • 2-Nitrodiphenylamine
    • 4-nitrodiphenylamine
    • N-nitrosodiphenylamine
    • N-methyl-p-nitroaniline
  • Decoppering additives, to hinder the buildup of copper residues from the gun barrel rifling
    • Tin metal and compounds, e.g. tin dioxide
    • Bismuth metal and compounds, e.g. bismuth trioxide, bismuth subcarbonate, bismuth nitrate, bismuth antimonide; the bismuth compounds are favored as copper dissolves in molten bismuth, forming brittle and easily removable alloy
    • Lead foil and lead compounds, phased out due to toxicity
  • Flash reducers, to reduce the brightness of the muzzle flash
  • Wear reduction additives, to lower the wear of the gun barrel liners USA 16"/50 (40.6 cm) Mark 7
  • Other additives
    • Graphite, a lubricant to cover the grains and prevent them from sticking together, and to dissipate static electricity
    • Calcium carbonate, to neutralize acidic decomposition products

The properties of the propellant are greatly influenced by the size and shape of its grains. The surface of the grains influences the speed of burning, and the shape influences the surface and its change during burning. By selection of the grain shape it is possible to influence the pressure vs time curve as the propellant burns.

Faster-burning propellants generate higher temperatures and higher pressures, however they also increase the wear of the gun barrels.

A Primex powder contains 0-40% nitroglycerin, 0-10% dibutyl phthalate, 0-10% polyester adipate, 0-5% rosin, 0-5% ethyl acetate, 0.3-1.5% diphenylamine, 0-1.5% N-nitrosodiphenylamine, 0-1.5% 2-nitrodiphenylamine, 0-1.5% potassium nitrate, 0-1.5% potassium sulfate, 0-1.5% tin dioxide, 0.02-1% graphite, 0-1% calcium carbonate, and nitrocellulose as the remainder to 100%. USA smokeless powder manufacturer's Material Safety Data Sheet

References

    See also

     
    This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Smokeless_powder". A list of authors is available in Wikipedia.
    Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE