My watch list  

Cooling with molecules

Researchers at the universities in Bielefeld, Manchester, and Zaragoza present low-temperature experiment in Nature Communications


Nature Communications

The magnetic molecule 'Gd7' used in the low-temperature experiment has the geometric structure of a snowflake.

An international team of scientists have become the first ever researchers to successfully reach temperatures below minus 272.15 degrees Celsius – only just above absolute zero – using magnetic molecules. The physicists and chemists are presenting their new investigation  in Nature Communications. It was developed by six scientists from Bielefeld University, the University of Manchester (Great Britain), and the Universidad de Zaragoza (Spain).

Minus 272.15 degrees Celsius is precisely one Kelvin. This is why the researchers call their development 'sub-Kelvin cooling'. Cold temperatures are generally obtained by using an effect that anyone can observe with an aerosol can. If you press the button on the can for long enough, you will notice that whatever is being sprayed out gets colder. A normal refrigerator also uses this effect. In both cases, a gaseous refrigerant cools down as it expands due to the drop from high to low pressure.

But how can we reach really low temperatures in the low Kelvin range? Nowadays, this is done by using helium as the refrigerant. However, helium is becoming increasingly scarce. 'The very rare helium-3 isotope with which one can also get down to a few tenths of a Kelvin is now practically unaffordable,' says Professor Dr. Jürgen Schnack, co-author of the study and physicist at Bielefeld University. Magnetic substances can also be used as refrigerants. These particularly include paramagnetic salts. Their cooling has nothing to do with pressure. They cool down when the external magnetic field generated by, for example, an electromagnet decreases. When the electric current is reduced in the coil, the magnetic field also decreases and the paramagnetic salts cool down.

In their article, the scientists from Zaragoza, Manchester, and Bielefeld report on successful sub-Kelvin cooling with an alternative medium – magnetic molecules. These are molecules containing magnetic ions such as gadolinium. 'Nowadays, these can be produced in large quantities so that they are readily available compared to helium,' says Professor Eric J. L. McInnes PhD, the head of the research team at the University of Manchester where the molecules studied were synthesized.

The magnetic molecule with which he and his colleagues have been experimenting is called 'Gd7' in short. Very appropriately, it has the geometric structure of a snowflake. As the computer simulations by Professor Schnack's research team show, it starts of by cooling down in a decreasing magnetic field; then it warms up again before finally cooling down once more as the magnetic field disappears. 'We were really excited when the theoretical computations were able to explain this complex behaviour in detail,' says the Professor of Theoretical Physics. 'Compared to paramagnetic salts in which the temperature drops continuously as the magnetic field declines, molecules such as Gd7 behave in more complex ways. They can be used to get down to really low temperatures without switching off the magnetic field completely,' reports Dr. Marco Evangelisti whose team at the Universidad de Zaragoza carried out the low-temperature experiments.

'You have to know that such simulations work with gigantic matrices, that is, special number fields. We are happy to have a powerful supercomputer in Bielefeld for this purpose,' says Schnack. The researcher reports that the computer system is not just invaluable for the project on magnetic cooling but also for the DFG Research Unit 945 'Nanomagnets', funded by the German Research Foundation (DFG).

Original publication:

Joseph W. Sharples, David Collison, Eric J. L. McInnes, Jürgen Schnack, Elias Palacios, Marco Evangelisti; "Quantum signatures of a molecular nanomagnet in direct magnetocaloric measurements."; Nature Communications 2014.

Facts, background information, dossiers
  • gadolinium
  • absolute zero
  • Universität Bielefeld
  • University of Manchester
  • Universidad de Zaragoza
  • magnetic molecules
More about Uni Bielefeld
  • News

    Chip-based nanoscopy: Microscopy in HD quality

    This information can be used to produce images with a resolution of about 20 to 30 nanometres, and thereby ten times that of conventional light microscopy. Until now, this method has required the use of expensive special instruments. Bielefeld University and the University of Tromsø have fi ... more

    Hot electrons point the way to perfect light absorption

    Light-absorbing films can be found in many everyday applications such as solar cells or sensors. They are used to convert light into electrical current or heat. The films literally trap the light. Although such absorber films are applied widely, scientists still do not know which mechanism ... more

    A new path to produce membranes

    In the future, carbon nanomembranes are expected to be able to filter out very fine materials. These separating layers are ultrathin, consisting of just one layer of molecules. In the long term, they could allow to separate gases from one another, for example, filtering toxins from the air. ... more

More about University of Manchester
  • News

    World's first 'molecular robot' capable of building molecules

    Scientists at The University of Manchester have created the world's first 'molecular robot' that is capable of performing basic tasks including building other molecules. The tiny robots, which are a millionth of a millimetre in size, can be programmed to move and build molecular cargo, usin ... more

    Graphene sieve turns seawater into drinking water

    Graphene-oxide membranes have attracted considerable attention as promising candidates for new filtration technologies. Now the much sought-after development of making membranes capable of sieving common salts has been achieved. New research demonstrates the real-world potential of providin ... more

    Potential approach to how radioactive elements could be 'fished out' of nuclear waste

    Manchester scientists have revealed how arsenic molecules might be used to 'fish out' the most toxic elements from radioactive nuclear waste - a breakthrough that could make the decommissioning industry even safer and more effective. Elizabeth Wildman, a PhD student in the research group le ... more

  • Videos

    What is graphene?

    What is graphene? Graphene is the world's first 2D material which was initially isolated in 2004. It was discovered after scientists at The University of Manchester separated one atomic layer of graphite using simple sticky tape. This short animation takes a look at how graphene was isolate ... more

More about Universidad de Zaragoza
  • News

    Composite material for water purification

    Fresh, clean water coming directly from the tap is a true luxury. In developing countries, people often have no choice but to use a contaminated river for drinking water. Water filters can help by quickly converting polluted surface or ground water into safe drinking water. In the journal A ... more

    Sequential synthesis to integrate catalysts – no need to purify

    Scientists from Spain have developed a new method for increasing yields in synthetic organic reactions. One pot syntheses may seem like an attractive option for syntheses with multiple reaction steps but reagents are not always compatible, leading to serious reductions in yields. An alterna ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE