Pushing the resolution limits of scattering near-field optical microscopy
A valuable tool for characterizing surfaces with atomic-scale precision
Researchers have developed a new microscope that can visualize the optical response of surfaces at an unprecedented spatial resolution of one nanometer. This paves the way for optical microscopy of atomic-scale structures, such as single molecules and atomic defects. Such capability is important for optical engineering of nanomaterials and surfaces at angstrom scales.

Fritz-Haber-Institut
Understanding the interaction between light and matter at the smallest scales (angstrom scale) is essential for advancing technology and materials science. Atomic-scale structures, such as defects in diamonds or molecules in electronic devices, can significantly influence a material's optical properties and functionality. To explore these tiny structures, we need to extend the capabilities of optical microscopy.
Researchers at the Department of Physical Chemistry at the Fritz-Haber Institute have developed an approach to scattering-type scanning near-field optical microscopy (s-SNOM) that achieves a spatial resolution of 1 nanometer. This technique, termed as ultralow tip oscillation amplitude s-SNOM (ULA-SNOM), combines advanced microscopy methods to visualize materials at the atomic level.
Traditional s-SNOM methods, which use a laser-illuminated probe tip to scan surfaces, typically achieve resolutions of 10 to 100 nanometers. However, this is insufficient for atomic-scale imaging. By integrating s-SNOM with noncontact atomic force microscopy (nc-AFM) and using a silver tip under visible laser illumination, the researchers created a plasmonic cavity (a specialized light field), confined to a tiny volume. This allows for detailed optical contrast at the angstrom scale.
This approach enables scientists to study materials at the smallest scales, potentially leading to advancements in designing new materials for electronics or medical devices. The ability to image features like atomic defects and nanoscale structures with such precision opens new possibilities for optical engineering and materials science.
In summary, this development provides a valuable tool for characterizing surfaces with atomic-scale precision, contributing to future advancements in single-molecule and atomic-scale optical microscopy.
Most read news
Organizations
Other news from the department science

Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.