My watch list
my.chemeurope.com  
Login  

Physicists find strange state of matter in superconducting crystal

24-Aug-2017

MPI CPfS

Crystalline samples of CeRhIn5 from Los Alamos were cut into microscopic, crystalline conducting paths with a focused ion beam at MPI-CPfS

MPI CPfS

Crystalline samples of CeRhIn5 from Los Alamos were cut into microscopic, crystalline conducting paths with a focused ion beam at MPI-CPfS

New research published this week shows a rare state of matter in which electrons in a superconducting crystal organize collectively. The findings lay the groundwork for answering one of the most compelling questions in physics: How do correlated electron systems work, and are they related to one another?

Electrons in most metals act individually, free to move through a metal to conduct electric currents and heat. But in a special sample of layered cerium, rhodium and indium (CeRhIn5), scientists discovered that electrons unite to flow in the same direction (a behavior called “breaking symmetry”) when in high magnetic fields of 30 tesla. Known as “electronic nematic,” this is a rare state of matter between liquid and crystal.

“It’s sort of like in ancient times,” clarifies Phillip Moll, principal investigator of this work and leader of the Physics of Microstructured Quantum Matter Group at the Max-Planck Institute for Chemical Physics of Solids in Germany. “People would draw maps in whatever direction best served them. But this state is like the moment when the world’s mapmakers unified to arbitrarily pick north as the orientation for all maps.”

Scientists believe that the electronic nematicity state may be closely related to superconductivity, another strongly correlated electron state in which electrons flow with no resistance. This cerium crystal becomes a superconductor under high pressure. However, when placed in a high magnetic field, it demonstrates this electronic nematic state. Because it exhibits both behaviors, CeRhIn5 appears uniquely positioned to one-way reveal possible interactions between these two correlated electron phases.

“This fundamental question in materials in which the electrons interact was the starting point for my PhD thesis,” adds Maja Bachmann, a doctoral student on the research team. “Do the electrons have to decide either to pair or to all go in one direction? In other words, are superconductivity and nematicity competitive phenomena, or could the same interaction that leads to pairing also create nematicity?”

This research featured a specialized sample fabricated from a single crystal of CeRhIn5 using focused ion beam (FIB) machining, and required experiments in both pulsed and resistive magnets. Work in the DC Field Facility’s 45-tesla hybrid showed that the nematic phase appears in very high fields, beginning at 30 tesla and remaining through the hybrid’s full field. Researchers wanted to understand how far this phase extended and, through experiments at the Pulsed Field Facility, found that at around 50 tesla, the nematicity vanishes, possibly even undergoing another exotic phase transition. .

But something else happened during the pulsed experiments: Researchers noticed that they could control the direction of the electrons when they tilted the field slightly. Returning back to the DC Field Facility, the scientists were able to continuously change this tilt angle while keeping the field steady at 45 tesla, a unique experimental parameter at the MagLab.

“One big advantage of the MagLab is that it offers all the state-of-the-art magnet technologies, and throughout a project, the magnet type can be changed easily if it becomes clear that a different technology was required,” Moll said. “Really, the close technological, scientific and administrative integration of these very different but complementary high-field technologies was the key to this success, and is a major strength of the MagLab.”

Moll’s team performed additional work in the lab’s 100-tesla pulsed magnet that will be featured in a future paper. The researchers are continuing to explore how the nematic phase merges into the superconducting phase, part of an ongoing project that will involve additional MagLab experiments.

Facts, background information, dossiers
  • MPI für chemische P…
  • Crystals
  • solid state physics
  • electronic nematicity
More about MPI für Chemische Physik fester Stoffe
  • News

    Unconventional quasiparticles predicted in conventional crystals

    An international team of researchers has predicted the existence of several previously unknown types of quantum particles in materials. The particles — which belong to the class of particles known as fermions — can be distinguished by several intrinsic properties, such as their responses to ... more

    Electron Rivers

    Usually, the movement of electrons in a real material is rather different from the flow of water in a river. However, in extraordinary materials like the metal oxide PdCoO2, “electron rivers” can exist, as predicted theoretically over fifty years ago and now demonstrated by scientists from ... more

    Gold: Rewriting text book knowledge

    Gold as an element is known and highly valued for more than 2500 years, and its popularity is based on its beautiful color and chemical inertness. It is well established that the golden color is, physically spoken, of relativistic origin. The surface of gold is unique, as it hosts states th ... more

More about Max-Planck-Gesellschaft
  • News

    Ultrafast snapshots of relaxing electrons in solids

    Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setti ... more

    Scientists shine new light on the “other high temperature superconductor”

    A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bi ... more

    Quantum magnets doped with holes

    Magnetism is a phenomenon that we experience in everyday-life quite often. The property, which is observed in materials such as such as iron, is caused by the alignment of electron spins. Even more interesting effects are expected in case that the magnetic crystals exhibit holes, i.e., latt ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE