My watch list  

Discovery of ionic elemental crystal against chemical intuition

New phase of elemental boron discovered


An ETH Zurich researcher has developed a computational method for predicting the structure of materials. He used it to solve the structure of a newly synthesized form of pure boron that displays some unusual physical properties and brings a surprise: it is partially ionic. The new structure can be viewed as a NaCl-type structure, with anionic and cationic positions occupied by two different clusters of boron atoms (B12 and B2). The difference of the electronic properties of these clusters brings about charge transfer, making this material a partially ionic boron boride (B2)δ+(B12)δ-. Results have been published in "Nature".

Boron is the chemical element most sensitive to impurities. This enhanced sensitivity makes experimental studies of this element very difficult. However, with the discovery of a new, superhard phase of the element, the theorists and experimentalists involved in the research have now come a big step closer to understanding boron. A separate publication by the authors in the "Journal of Superhard Materials" demonstrated that the new phase is superhard.

The new superhard material was independently synthesized by two researchers who eventually joined forces with crystallographer Artem Oganov's theoretical team. Initially, Jiuhua Chen, a material scientist at Florida International University, and Vladimir Solozhenko, a physical chemist at the Centre National de la Recherche Scientifique (CNRS) in France, conducted experiments on extremely pure boron material, containing at most one foreign atom to one million boron atoms. They exposed this material to temperatures of over 1,500 degrees Celsius and to pressures in the range 12-30 GPa, similar to those found several hundreds of kilometers inside the Earth. Under these conditions both teams of experimentalists found a new polymorph of boron, but could not solve its structure.

Artem Oganov, working at ETH Zurich's Department of Material Science, has now developed a computational method for predicting the stable crystal structures of materials. His calculations reveal that in the new phase, boron atoms form two different kinds of nanoclusters: an icosahedron B12 consisting of twelve atoms and dumbbell B2 consisting of just two boron atoms.

These nanoclusters are arranged in the new phase of boron just as are sodium and chlorine ions in the rock salt (table salt) structure (see diagram). The new phase is predicted to remain stable to 89 GPa. The new knowledge obtained in this study allowed the researchers to propose a phase diagram for boron – the only light element whose phase diagram remained unknown until now.

The unexpected structure of the new phase, which the authors called γ-B, contains atoms which are ionized, meaning that the electrons are distributed between the atoms unevenly. According to classical textbooks, ionic bonds are possible only between two different elements, such as sodium and chlorine in table salt. But in the new structure ionic bonds occur between atoms of the same element, though belonging to two kinds of nanoclusters. This ionicity leads to unusual for an element phenomena in dielectric properties, lattice dynamics, and anomalous electronic properties. Additional experiments carried out by the researchers also show that the new phase is superhard.

Facts, background information, dossiers
More about ETH Zürich
  • News

    Universal stabilization

    Researchers led by Lucio Isa, Professor of Interfaces, Soft Matter and Assembly at ETH Zurich's Department of Materials, have created a new type of silica particle able to stabilise emulsions in a new way. An emulsion is a finely dispersed mixture of two immiscible liquids, constituted by d ... more

    Nanoparticles remain unpredictable

    The way that nanoparticles behave in the environment is extremely complex. There is currently a lack of systematic experimental data to help understand them comprehensively, as ETH environmental scientists have shown in a large overview study. A more standardised approach would help to adva ... more

    Platelets instead of quantum dots

    A team of researchers led by ETH Zurich professor David Norris has developed a model to clarify the general mechanism of nanoplatelet formation. Using pyrite, they also managed to confirm their theory. Scientists have been researching luminous coloured quantum dots (QDs) since the 1980s. Th ... more

  • Videos

    Oxybromination of methane over vanadium phosphate

    ETH Zurich scientists have discovered a new catalyst that allows the easy conversion of natural gas constituents into precursors for the production of fuels or complex chemicals, such as polymers or pharmaceuticals. The new catalyst is extremely stable and results in fewer unwanted by-produ ... more

More about State University of New York
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE