To use all functions of this page, please activate cookies in your browser.

my.chemeurope.com

With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.

- My watch list
- My saved searches
- My saved topics
- My newsletter

## Potential energy surfaceA ## Additional recommended knowledgeThere is a natural correspondence between potential energy surfaces as they exist (as polynomial surfaces) and their application in potential theory, which associates and studies harmonic functions in relation to these surfaces. For example, the Morse potential and the simple harmonic potential well are common one-dimensional potential energy surfaces ( These simple potential energy surfaces (which can be obtained analytically), however, only provide an adequate description of the very simplest chemical systems. To model an actual chemical reaction, a potential energy surface must be created to take into account every possible orientation of the reactant and product molecules and the electronic energy of each of these orientations. Typically, the electronic energy is obtained for each of tens of thousands of possible orientations, and these energy values are then fitted numerically to a multidimensional function. The accuracy of these points depends upon the level of theory used to calculate them. For particularly simple surfaces (such as H + H2), the analytically derived LEPS (London-Eyring-Polanyi-Sato) potential surface may be sufficient. Other methods of obtaining such a fit include cubic splines, Shepard interpolation, and other types of multidimensional fitting functions. Once the potential energy surface has been obtained, several points of interest must be determined. Perhaps the most important is the global minimum for the energy value. This global minimum, which can be found numerically, corresponds to the most stable nuclear configuration. Other interesting features are the reaction coordinate (the path along the potential energy surface that the atoms "travel" during the chemical reaction), saddle points or local maxima along this coordinate (which correspond to transition states), and local minima along this coordinate (which correspond to reactive intermediates). Outside of physics and chemistry, "potential energy" surfaces may be associated with a cost function, which may be explored in order to minimize the function. |

This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Potential_energy_surface". A list of authors is available in Wikipedia. |