My watch list
my.chemeurope.com  
Login  

Proton affinity



The proton affinity, Epa, of a anion or of a neutral atom or molecule is a measure of its gas-phase basicity. It is the energy released in the following reactions:[1]

A + H+ → HA
B + H+ → BH+

Additional recommended knowledge

These reactions are always exergonic in the gas phase, i.e. energy is released when the reaction advances in the direction shown. However, proton affinities are conventionally quoted with the opposite sign convention from most other thermodynamic properties, a positive Epa indicating a release of energy by the system. This is the same sign convention as is used for electron affinity.

The higher the proton affinity, the stronger the base and the weaker the conjugate acid in the gas phase. The strongest known base is the methanide anion (Epa = 1743 kJ/mol), slightly stronger than the hydride ion (Epa = 1675 kJ/mol),[2] making methane the weakest proton acid[3] in the gas phase, followed by dihydrogen. The weakest known base is the helium atom (Epa = 177.8 kJ/mol),[4] making the hydrohelium(1+) ion the strongest known proton acid.

Proton affinities illustrate the role of hydration is aqueous-phase Brønsted acidity. Hydrofluoric acid is a weak acid in aqueous solution (pKa = 3.15)[5] but a very weak acid in the gas phase (Epa (F) = 1554 kJ/mol):[2] the fluoride ion is a strong a base as SiH3 in the gas phase, but its basicity is reduced in aqueous solution because it is strong hydrated, and therefore stabilized. The contrast is even more marked for the hydroxide ion (Epa = 1635 kJ/mol),[2] one of the strongest known proton acceptors in the gas phase. Suspensions of potassium hydroxide in dimethyl sulfoxide (which does not solvate the hydroxide ion as strongly as water) are markedly more basic than aqueous solutions, and are capable of deprotonating such weak acids as triphenylmethane (pKa = ca. 30).[6]


To a first approximation, the proton affinity of a base in the gas phase can be seen as offsetting (usually only partially) the extremely favorable hydration energy of the gaseous proton (ΔE = −1530 kJ/mol), as can be seen in the following estimates of aqueous acidity:

Proton affinity HHe+(g) H+(g) + He(g) +178 kJ/mol [4]     HF(g) H+(g) + F(g) +1554 kJ/mol [2]     H2(g) H+(g) + H(g) +1675 kJ/mol [2]
Hydration of acid HHe+(aq) HHe+(g)   +973 kJ/mol [7]   HF(aq) HF(g)   +23 kJ/mol [5]   H2(aq) H2(g)   −18 kJ/mol [8]
Hydration of proton H+(g) H+(aq)   −1530 kJ/mol [5]   H+(g) H+(aq)   −1530 kJ/mol [5]   H+(g) H+(aq)   −1530 kJ/mol [5]
Hydration of base He(g) He(aq)   +19 kJ/mol [8]   F(g) F(aq)   −13 kJ/mol [5]   H(g) H(aq)   +79 kJ/mol [5]
Dissociation equilibrium   HHe+(aq) H+(aq) + He(aq) −360 kJ/mol     HF(aq) H+(aq) + F(aq) +34 kJ/mol     H2(aq) H+(aq) + H(aq) +206 kJ/mol  
Estimated pKa −63   +6   +36

These estimates suffer from the fact the free energy change of dissociation is in effect the small difference of two large numbers. However, hydrofluoric acid is correctly predicted to be a weak acid in aqueous solution and the estimated value for the pKa of dihydrogen is in agreement with the behaviour of saline hydrides (e.g., sodium hydride) when used in organic synthesis.

See also

References

  1. ^ "Proton affinity." Compendium of Chemical Terminology.
  2. ^ a b c d e Bartmess, J. E.; Scott, J. A.; McIver, R. T. (1979). J. Am. Chem. Soc. 101:6046.
  3. ^ The term "proton acid" is used to distinguish these acids from Lewis acids. It is the gas-phase equivalent of the term Brønsted acid.
  4. ^ a b Lias, S. G.; Liebman, J. F.; Levin, R. D. (1984). J. Phys. Chem. Ref. Data. 13':695.
  5. ^ a b c d e f g Jolly, William L. (1991). Modern Inorganic Chemistry (2nd Edn.). New York: McGraw-Hill. ISBN 0-07-112651-1.
  6. ^ Jolly, William L. (1967). J. Chem. Educ. 44:304. Jolly, William L. (1968). Inorg. Synth. 11:113.
  7. ^ Estimated to be the same as for Li+(aq) → Li+(g).
  8. ^ a b Estimated from solubility data.
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Proton_affinity". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE