My watch list  

Eyring equation

The Eyring equation also known as Eyring-Polanyi equation in chemical kinetics relates the reaction rate to temperature. It was developed almost simultaneously in 1935 by Henry Eyring, M.G. Evans and Michael Polanyi. This equation follows from the transition state theory (aka, activated-complex theory) and contrary to the empirical Arrhenius equation this model is theoretical and based on statistic thermodynamics.

The general form of the Eyring-Polanyi equation resemble somewhat to the Arrhenius equation:

\ k = \frac{k_BT}{h}e^{-\frac{\Delta G^\Dagger}{RT}}

where ΔG is the Gibbs free energy of activation, kB is Boltzmann's constant, and h is Planck's constant.

It can be rewritten as:

k = \left(\frac{k_BT}{h}\right) exp\left(\frac{\Delta S^\ddagger}{R}\right) exp\left(-\frac{\Delta H^\ddagger}{RT}\right)

To find the linear form of the Eyring-Polanyi equation:

\ln \frac{k}{T} = \frac{-\Delta H^\ddagger}{R} \cdot \frac{1}{T} + \ln \frac{k_B}{h} + \frac{\Delta S^\ddagger}{R}


A certain chemical reaction is performed at different temperatures and the reaction rate is determined. The plot of \ \ln(k/T) versus \ 1/T gives a straight line with slope \  -\Delta H^\ddagger / R from which the enthalpy of activation can be derived and with intercept \  \ln(k_b/h) + \Delta S^\ddagger / R from which the entropy of activation is derived.


  • Evans, M.G.; Polanyi M. (1935). "". Trans. Faraday Soc. 31: 875.
  • Eyring, H. (1935). "". J. Chem. Phys. 3: 107.
  • Eyring, H.; Polanyi M. (1931). "". Z. Phys. Chem. Abt. B 12: 279.
  • Laidler, K.J.; King M.C. (1983). "The development of Transition-State Theory". J. Phys. Chem. 87: 2657-2664.
  • Polanyi, J.C. (1987). "Some concepts in reaction dynamics. Science" 236 (4802): 680-690.
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Eyring_equation". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE