My watch list
my.chemeurope.com  
Login  

Isotopes of niobium



Naturally occurring niobium (Nb) is composed of one stable isotope (Nb-93). The most stable radioisotopes are Nb-92 with a half-life of 34.7 million years, Nb-94 (half life: 20300 years), and Nb-91 with a half life of 680 years. There is also a meta state at 31 keV whose half-life is 16.13 years. Twenty three other radioisotopes have been characterized. Most of these have half lives that are less than two hours except Nb-95 (35 days), Nb-96 (23.4 hours) and Nb-90 (14.6 hours). The primary decay mode before the stable Nb-93 is electron capture and the primary mode after is beta emission with some neutron emission occurring in the first mode of the two mode decay of Nb-104, 109 and 110.

Only Nb-95 (35 days) and Nb-97 (72 minutes) and heavier isotopes (halflives in seconds) are fission products in significant quantity, as the other isotopes are shadowed by stable or very long-lived (Zr-93) isotopes of the preceding element zirconium from production via beta decay of neutron-rich fission fragments. Nb-95 is the decay product of Zr-95 (64 days), so disappearance of Nb-95 in used nuclear fuel is slower than would be expected from its own 35 day halflife alone.. Tiny amounts of the other isotopes may be produced as direct fission products.
Standard atomic mass: 92.90638(2) u

Table

nuclide
symbol
Z(p) N(n)  
isotopic mass (u)
 
half-life nuclear
spin
representative
isotopic
composition
(mole fraction)
range of natural
variation
(mole fraction)
excitation energy
81Nb 41 40 80.94903(161)# <44 ns 3/2-#
82Nb 41 41 81.94313(32)# 51(5) ms 0+
83Nb 41 42 82.93671(34) 4.1(3) s (5/2+)
84Nb 41 43 83.93357(32)# 9.8(9) s 3+
84mNb 338(10) keV 103(19) ns (5-)
85Nb 41 44 84.92791(24) 20.9(7) s (9/2+)
85mNb 759.0(10) keV 12(5) s (1/2-)
86Nb 41 45 85.92504(9) 88(1) s (6+)
86mNb 250(160)# keV 56(8) s high
87Nb 41 46 86.92036(7) 3.75(9) min (1/2-)
87mNb 3.84(14) keV 2.6(1) min (9/2+)#
88Nb 41 47 87.91833(11) 14.55(6) min (8+)
88mNb 40(140) keV 7.8(1) min (4-)
89Nb 41 48 88.913418(29) 2.03(7) h (9/2+)
89mNb 0(30)# keV 1.10(3) h (1/2)-
90Nb 41 49 89.911265(5) 14.60(5) h 8+
90m1Nb 122.370(22) keV 63(2) µs 6+
90m2Nb 124.67(25) keV 18.81(6) s 4-
90m3Nb 171.10(10) keV <1 µs 7+
90m4Nb 382.01(25) keV 6.19(8) ms 1+
90m5Nb 1880.21(20) keV 472(13) ns (11-)
91Nb 41 50 90.906996(4) 680(130) a 9/2+
91m1Nb 104.60(5) keV 60.86(22) d 1/2-
91m2Nb 2034.35(19) keV 3.76(12) µs (17/2-)
92Nb 41 51 91.907194(3) 3.47(24)E+7 a (7)+
92m1Nb 135.5(4) keV 10.15(2) d (2)+
92m2Nb 225.7(4) keV 5.9(2) µs (2)-
92m3Nb 2203.3(4) keV 167(4) ns (11-)
93Nb 41 52 92.9063781(26) STABLE 9/2+ 1.0000
93mNb 30.77(2) keV 16.13(14) a 1/2-
94Nb 41 53 93.9072839(26) 2.03(16)E+4 a (6)+
94mNb 40.902(12) keV 6.263(4) min 3+
95Nb 41 54 94.9068358(21) 34.991(6) d 9/2+
95mNb 235.690(20) keV 3.61(3) d 1/2-
96Nb 41 55 95.908101(4) 23.35(5) h 6+
97Nb 41 56 96.9080986(27) 72.1(7) min 9/2+
97mNb 743.35(3) keV 52.7(18) s 1/2-
98Nb 41 57 97.910328(6) 2.86(6) s 1+
98mNb 84(4) keV 51.3(4) min (5+)
99Nb 41 58 98.911618(14) 15.0(2) s 9/2+
99mNb 365.29(14) keV 2.6(2) min 1/2-
100Nb 41 59 99.914182(28) 1.5(2) s 1+
100mNb 470(40) keV 2.99(11) s (4+,5+)
101Nb 41 60 100.915252(20) 7.1(3) s (5/2#)+
102Nb 41 61 101.91804(4) 1.3(2) s 1+
102mNb 130(50) keV 4.3(4) s high
103Nb 41 62 102.91914(7) 1.5(2) s (5/2+)
104Nb 41 63 103.92246(11) 4.9(3) s (1+)
104mNb 220(120) keV 940(40) ms high
105Nb 41 64 104.92394(11) 2.95(6) s (5/2+)#
106Nb 41 65 105.92797(21)# 920(40) ms 2+#
107Nb 41 66 106.93031(43)# 300(9) ms 5/2+#
108Nb 41 67 107.93484(32)# 0.193(17) s (2+)
109Nb 41 68 108.93763(54)# 190(30) ms 5/2+#
110Nb 41 69 109.94244(54)# 170(20) ms 2+#
111Nb 41 70 110.94565(54)# 80# ms [>300 ns] 5/2+#
112Nb 41 71 111.95083(75)# 60# ms [>300 ns] 2+#
113Nb 41 72 112.95470(86)# 30# ms [>300 ns] 5/2+#

Notes

  • Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
  • Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC which use expanded uncertainties.

References

  • Isotope masses from Ame2003 Atomic Mass Evaluation by G. Audi, A.H. Wapstra, C. Thibault, J. Blachot and O. Bersillon in Nuclear Physics A729 (2003).
  • Isotopic compositions and standard atomic masses from Atomic weights of the elements. Review 2000 (IUPAC Technical Report). Pure Appl. Chem. Vol. 75, No. 6, pp. 683-800, (2003) and Atomic Weights Revised (2005).
  • Half-life, spin, and isomer data selected from these sources. Editing notes on this article's talk page.
    • Audi, Bersillon, Blachot, Wapstra. The Nubase2003 evaluation of nuclear and decay properties, Nuc. Phys. A 729, pp. 3-128 (2003).
    • National Nuclear Data Center, Brookhaven National Laboratory. Information extracted from the NuDat 2.1 database (retrieved Sept. 2005).
    • David R. Lide (ed.), Norman E. Holden in CRC Handbook of Chemistry and Physics, 85th Edition, online version. CRC Press. Boca Raton, Florida (2005). Section 11, Table of the Isotopes.


Isotopes of zirconium Isotopes of niobium Isotopes of molybdenum
Index to isotope pages
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Isotopes_of_niobium". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE