My watch list
my.chemeurope.com  
Login  

Pulsed laser deposition



    Pulsed laser deposition (PLD) is a thin film deposition (specifically a physical vapor deposition, PVD) technique where a high power pulsed laser beam is focused inside a vacuum chamber to strike a target of the desired composition. Material is then vaporized from the target and deposited as a thin film on a substrate, such as a silicon wafer facing the target. This process can occur in ultra high vacuum or in the presence of a background gas, such as oxygen which is commonly used when depositing oxides to fully oxygenate the deposited films.

While the basic-setup is simple relative to many other deposition techniques, the physical phenomena of laser-target interaction and film growth are quite complex (see Process below). When the laser pulse is absorbed by the target, energy is first converted to electronic excitation and then into thermal, chemical and mechanical energy resulting in evaporation, ablation, plasma formation and even exfoliation [1]. The ejected species expand into the surrounding vacuum in the form of a plume containing many energetic species including atoms, molecules, electrons, ions, clusters, particulates and molten globules, before depositing on the typically hot substrate.

Contents

Process

The detailed mechanisms of PLD are very complex including the ablation process of the target material by the laser irradiation, the development of a plasma plume with high energetic ions, electrons as well as neutrals and the crystalline growth of the film itself on the heated substrate. The process of PLD can generally be divided into four stages:

  • Laser ablation of the target material and creation of a plasma
  • Dynamic of the plasma
  • Deposition of the ablation material on the substrate
  • Nucleation and growth of the film on the substrate surface

Each of these steps is crucial for the crystallinity, uniformity and stoichiometry of the resulting film.

Laser ablation of the target material and creation of a plasma

The ablation of the target material upon laser irradiation and the creation of plasma are very complex processes. The removal of atoms from the bulk material is done by vaporization of the bulk at the surface region in a state of non-equilibrium and is caused by a Coulomb explosion. In this the incident laser pulse penetrates into the surface of the material within the penetration depth. This dimension is dependent on the laser wavelength and the index of refraction of the target material at the applied laser wavelength and is typically in the region of 10 nm for most materials. The strong electrical field generated by the laser light is sufficiently strong to remove the electrons from the bulk material of the penetrated volume. This process occurs within 10 ps of a ns laser pulse and is caused by non-linear processes such as multiphoton ionization which are enhanced by microscopic cracks at the surface, voids, and nodules, which increase the electric field. The free electrons oscillate within the electromagnetic field of the laser light and can collide with the atoms of the bulk material thus transferring some of their energy to the lattice of the target material with in the surface region. The surface of the target is then heated up and the material is vaporized. The temperature of the generated plasma plume is typically 10000 K.

Dynamic of the plasma

In the second stage the material expands in a plasma parallel to the normal vector of the target surface towards the substrate due to Coulomb repulsion and recoil from the target surface. The spatial distribution of the plume is dependent on the background pressure inside the PLD chamber. The density of the plume can be described by a cos^n(x) law with a shape similar to a Gaussian curve. The dependency of the plume shape on the pressure can be described in three stages:

  • The vacuum stage, where the plume is very narrow and forward directed; almost no scattering occurs with the background gases.
  • The intermediate region where a splitting of the high energetic ions from the less energetic species can be observed. The Time-of-Flight (TOF) data can be fitted to a shock wave model; however, other models could also be possible.
  • High pressure region where we find a more diffusion-like expansion of the ablated material. Naturally this scattering is also dependent on the mass of the background gas and can influence the stoichiometry of the deposited film.

The most important consequence of increasing the background pressure is the slowing down of the high energetic species in the expanding plasma plume. It has been shown that particles with kinetic energies around 50 eV can resputter the film already deposited on the substrate. This results in a lower deposition rate and can furthermore result in a change in the stoichiometry of the film.

Deposition of the ablation material on the substrate

The third stage is important to determine the quality of the deposited films. The high energetic species ablated from the target are bombarding the substrate surface and may cause damage to the surface by sputtering off atoms from the surface but also by causing defect formation in the deposited film. The sputtered species form the substrate and the particles emitted from the target form a collision region, which serves as a source for condensation of particles. When the condensation rate is high enough, a thermal equilibrium can be reached and the film grows on the substrate surface at the expense of the direct flow of ablation particles and the thermal equilibrium obtained.

Nucleation and growth of the film on the substrate surface

The nucleation process and growth of crystalline film on a substrate depend on several factors such as the density, energy, ionization degree of the ablated material and temperature, roughness and crystalline properties of the substrate. Although PLD has a much lower average deposition rate than other deposition techniques such as Molecular Beam Epitaxy (MBE) and Sputtering Deposition (SD) depending on the repetition rate of the laser it can be demonstrated that the fraction of stable nucleation sites is orders of magnitudes higher for PLD than for SD and MBE. This has several implications on the growth mechanism in PLD: The critical nucleus radius is smaller and in the range of one or two atoms. Since the nucleation rate is proportional to the nucleation site density and the rate of impingement, it is much higher in the case of PLD. Furthermore, the high density of nucleation sites also increases the smoothness of the deposited film. This is why PLD is such an outstanding method for the growth of thin films.

History

Pulsed laser deposition is only one of many thin film deposition techniques. Other methods include molecular beam epitaxy (MBE), chemical vapor deposition (CVD), sputter deposition (RF, Magnetron, and ion beam). The history of laser-assisted film growth started soon after the technical realization of the first laser in 1960 by Maiman. Smith and Turner utilized a ruby laser to deposit the first thin films in 1965, three years after Breech and Cross studied the laser-vaporization and excitation of atoms from solid surfaces. However, the deposited films were still inferior to those obtained by other techniques such as chemical vapor deposition and molecular beam epitaxy. In the early 1980’s, a few research groups (mainly in the former USSR) achieved remarkable results on manufacturing of thin film structures utilizing laser technology. The breakthrough came in 1987 when Dijkkamp and Venkatesan were able to laser deposit a thin film of YBa2Cu3O7, a high temperature superconductive material, which was of more superior quality than films deposited with alternative techniques. Since then, the technique of Pulsed Laser Deposition has been utilized to fabricate high quality crystalline films. The deposition of ceramic oxides, nitride films, metallic multilayers and various superlattices has been demonstrated. In the 1990’s the development of new laser technology, such as lasers with high repetition rate and short pulse durations, made PLD a very competitive tool for the growth of thin, well defined films with complex stoichiometry.

Technical aspects

There are many different arrangements to build a deposition chamber for PLD. The target material which is evaporated by the laser is normally found as a rotating disc attached to a support. However, it can also be sintered into a cylindrical rod with rotational motion and a translational up and down movement along it's axis. This special configuration allows not only the utilization of a synchronized reactive gas pulse but also of a multicomponent target rod with which films of different multilayers can be created.

References

  1. ^ Pulsed Laser Deposition of Thin Films, edited by Douglas B. Chrisey and Graham K. Hubler, John Wiley & Sons, 1994

External links

  • Fundamentals of Pulsed laser deposition Fundamentals of Pulsed laser deposition
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Pulsed_laser_deposition". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE