05-Feb-2010 - Universität Innsbruck

Ultra-cold chemistry

First direct observation of exchange process in quantum gas

Considerable progresses made in controlling quantum gases open up a new avenue to study chemical processes. Rudolf Grimm's research team has now succeeded in directly observing chemical exchange processes in an ultracold sample of cesium atoms and Feshbach molecules.

Complex processes, which to a large extent cannot be observed directly, determine when chemical reactions build molecules or conversely release molecular bonds. Some of these processes need energy (endoergic processes) and others release energy (exoergic processes). For the first time, great progresses made in the field of ultracold atomic and molecular gases have facilitated the realization of elementary chemical processes in a fully controlled way, where all particles can be prepared in a specifically defined quantum state. In an international first, together with American researchers, Rudolf Grimm and his team of physicists have now succeeded in directly observing and also energetically controlling an exchange process in a quantum gas. "Our experiment showed that it is possible to control exchange processes involving ultracold molecules", Grimm says excitedly.

Directly observed processes

The scientists optically trap cesium atoms and cool them dramatically. A Feshbach association results in an ultracold particle cloud consisting of about 4,000 molecules and 30,000 atoms, where a part of the atoms are arranged in dimers. By applying a microwave pulse, the atoms are transferred into another quantum state without the molecules being modified. After preparing this mixture of molecules (A+A) and atoms (B), the experimental physicists apply a certain magnetic field, which allows them to fully control the binding energy of the molecules. The collision of the molecules and atoms results in an exchange process when a certain threshold of binding energy is reached. The original molecules decay to atoms (A) and new molecules are produced (A+B). "Since the energy produced in this exoergic process is very low, the reaction products remain in the trap," explains Rudolf Grimm. "Thus, we were able to directly observe the chemical process for the first time ever."

Leading in the field of quantum gases

The research group led by Wittgenstein awardee Rudolf Grimm of the Institute for Experimental Physics of the University of Innsbruck and the Institute for Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences (ÖAW) assumes a leading role in the research on ultracold quantum gases. For example, in 2002 the physicists produced the first Bose-Einstein condensate of cesium atoms. This success was followed by the realization of a first Bose-Einstein condensate of molecules and a Fermi condensate. The quantum physicists are now able to produce more complex molecules in ultracold quantum gases. "A totally new field of research opens up, which promises possibilities to study diverse chemical reactions in a controlled way by using ultracold quantum gases," explains Grimm.

Original publication: S. Knoop et al.; "Magnetically Controlled Exchange Process in an Ultracold Atom-Dimer Mixture"; Physical Review Letters 2010

Facts, background information, dossiers
More about Universität Innsbruck
  • News

    How particulate matter arises from pollutant gases

    When winter smog takes over Asian mega-cities, more particulate matter is measured in the streets than expected. An international team, including researchers from Goethe University Frankfurt, as well as the universities in Vienna and Innsbruck, has now discovered that nitric acid and ammoni ... more

    Quantum gas turns supersolid

    Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly lon ... more

    Energy-saving new LED phosphor

    The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one six ... more

More about Österreichische Akademie der Wissenschaften
  • News

    Quantum gas turns supersolid

    Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly lon ... more

    Particle Zoo in a Quantum Computer

    Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary parti ... more

    The "great smoky dragon" of Quantum Physics

    Physicists around Anton Zeilinger have, for the first time, evaluated the almost 100-year long history of quantum delayed-choice experiments – from the theoretical beginnings with Albert Einstein to the latest research works in the present. Since the 17th century, science was intrigued by t ... more