My watch list
my.chemeurope.com  
Login  

First diode for magnetic fields

23-Nov-2018

Luis Veloso

When the left coil is energized, the magnetic field reaches the right coil (top). When the right coil is energized, the magnetic field does not reach the left one (bottom).

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the core of any electronic component, being one of the most essential building blocks. Until now there were no such components for magnetic fields. Physicists at the University of Innsbruck and the ÖAW Institute of Quantum Optics and Quantum Information (IQOQI) are now changing that. They designed the first diode for magnetic fields and demonstrated its functionality in the laboratory.

“Our device makes possible to transfer the magnetic field from a first magnetic element - for example a magnet or a coil - to a second one. When roles are inverted and one tries to send magnetic field from the second to the first, no magnetic field is transferred," explains first author Jordi Prat Camps, who is now a researcher at the University of Sussex in England. Technically speaking, this means that the mutual inductances between the two sources, which are routinely assumed to be symmetric, can be made extremely asymmetric. The key element to obtain this result is the use of an electrical conductor that moves with constant velocity. “When the conductor is properly placed near to the magnetic elements and is moved at the right speed, the coupling between them becomes unidirectional, and a diode for magnetic fields is realized”, says Jordi Prat Camps.

Coupled magnetic elements are found in many key technologies like electric motors, transformers, magnetic memories or MRI machines. In all of them, magnetic elements are symmetrically coupled. “The availability of a new magnetic tool like a diode might thus open a bunch of new possibilities”, Gerhard Kirchmair points to the future. For example, the efficiency of wireless charging devices could be improved, since the energy can only flow from the charging station to the device and not in the other direction.

Facts, background information, dossiers
  • magnetic fields
  • diodes
More about Universität Innsbruck
  • News

    Quantum gas turns supersolid

    Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly lon ... more

    Energy-saving new LED phosphor

    The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one six ... more

    Ultracold quantum mix

    The experimental investigation of ultracold quantum matter makes it possible to study quantum mechanical phenomena that are otherwise hardly accessible. A team led by the Innsbruck physicist Francesca Ferlaino has now succeeded for the first time in mixing quantum gases of the strongly magn ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE