15-Jun-2016 - Rice University

Nanosubs gain better fluorescent properties for tracking

The next generation of nanosubmarines being developed at Rice University has been upgraded with tags that fluoresce longer, which enables the submersibles to be tracked for greater periods while being driven through a solution.

The single-molecule vehicles introduced by the Rice lab of chemist James Tour last year may someday be used to deliver drugs or other cargo. The new version is built and tested with collaborators at Tel Aviv University in Israel.

The first nanosub, USN-1, could be monitored but not imaged by a technique that would irradiate it with light for very short times. But that did not offer information about the submersible's trajectory, according to lead author Víctor García-Lopéz, a former Rice graduate student. The latest model, the 334-atom USN-2, can be viewed by single-molecule microscopy for at least 1.5 seconds, long enough for 30 frames of video.

"This makes it possible for us to track the trajectory of a single nanosubmersible," Tour said. "It should lead to a better understanding of how our vehicles move."

The lab attached cyclooctatetraene (COT) to the molecule's body and motor to keep them from bleaching, which quenches fluorescence. The light-driven motor developed by scientists in the Netherlands is a tail-like ligand that spins about a million times per second. The new subs, like the originals, are capable of moving 15 meters per second over nanoscale distances, based on the thrust provided by each turn of the rotating motor. Between the frequent collisions that stop their forward motion, Tour said, they are "the fastest-moving molecules ever seen in solution."

The nanosubmarines still can't be steered in the traditional sense, Tour said. The team is satisfied for the moment with achieving "enhanced diffusion" that lets them figure out how to move a one-molecule vehicle in a solution of similarly sized molecules.

"The next step is to track these nanosubmarines in solution and see if we can use them to deliver cargo or interact with cells," Tour said.

Facts, background information, dossiers
More about Rice University
  • News

    Reversal speeds creation of important molecule

    The story of halichondrin B, an inspirational molecule obtained from a marine creature, goes back to the molecule's discovery in an ocean sponge in 1986. Though it has been replicated in the laboratory several times before, new work by Rice University chemists could make halichondrin B and ... more

    New quantum material discovered

    In everyday life, phase transitions usually have to do with temperature changes – for example, when an ice cube gets warmer and melts. But there are also different kinds of phase transitions, depending on other parameters such as magnetic field. In order to understand the quantum properties ... more

    Cerium sidelines silver to make drug precursor

    Save your silver! It's better used for jewelry than as a catalyst for drugs. Rice University scientists have developed a greatly simplified method to make fluoroketones, precursors for drug design and manufacture that typically require a silver catalyst. Rice chemist Julian West and graduat ... more