My watch list
my.chemeurope.com  
Login  

A computational method for designing a new type of 2D carbons

16-Aug-2018

Yongjin Lee and Efrem Braun (UC Berkeley)

Schwarzite generated by computationally-templating the zeolite FAU. Black spheres are deposited carbon atoms, yellow ribbons are zeolite silicon atoms, and red ribbons are zeolite oxygen atoms.

Yongjin Lee and Efrem Braun (UC Berkeley)

An example of the pure carbon surface, which shows the Schwarz P minimal surface as templated by a hypothetical zeolite.

Zeolites are porous minerals that occur both naturally but also are being synthesized artificially. Because of their stability and durability, they are used in industrial water purification, catalysis, adsorption, and even in blood-clotting powders (e.g. QuickClot used by the US military).

A recent application of zeolites is to use them as templates for "growing" carbon surfaces inside the pores of zeolites. Now, the lab of Berend Smit at EPFL Sion, working with their colleagues at University of California Berkeley, have developed a computational method to grow these carbon surfaces.

To the surprise of the authors a detailed analysis of these carbon structures resembles negatively curved surfaces called Schwarzites. "For a long time Schwarzites have been only a mathematical concept of a new form of two-dimensional carbon," says Berend Smit. "Like graphene, they have potentially many unique properties and interesting applications." The unique electronic, magnetic, and optical properties of Schwarzites make them ideal for supercapacitors, battery electrodes, catalysis, gas storage, and chemical separations.

"Our work allowed us to generate a library of Schwarzites that can be obtained from all known zeolite structures," says Smit. "We can now suggest to experimental groups which zeolite to use as a template for making a new two-dimensional carbon, described by a particular Schwarzite."

Facts, background information, dossiers
More about Ecole Polytechnique Fédérale de Lausanne
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE