My watch list  

The first atomic X-ray laser


A group of scientists headed by Nina Rohringer from the Hamburg Center for Free-Electron Laser Science (CFEL) realized the first X-ray laser based on atoms at the Californian research centre SLAC. Using neon atoms, they generated ultra-short X-ray bursts of unique colour purity. In many cases, this allows a sharper look into the nano world, as scientists reported in the British journal “Nature” (DOI: 10.1038/nature.10721). CFEL is a joint enterprise of Deutsches Elektronen-Synchrotron DESY, the Max Planck Society and the University of Hamburg.

Max Planck scientist Rohringer and her colleagues from Lawrence Livermore National Laboratory and Colorado State University used the so-called free-electron laser LCLS at SLAC for their experiments. With strong magnets, free-electron lasers bring fast electrons accelerated by particle accelerators on a zigzag course, thus generating laser like radiation within the X-ray range. Unlike these, traditional optical lasers are based on the radiation of atoms which are excited to emit light by simulated emission. . So far, this was not possible in the X-ray range, because the excitation of atoms in this area requires very intensive radiation. With the LCLS, Rohringer and her team now created the first X-ray laser based on atoms – more than 40 years after the original concept was published.

Due to their short wave lengths, X-ray lasers are able to make atomic details visible and, with their ultra-short pulse duration, take snapshots of fast molecular processes. Thus, it may be possible to photograph the process of chemical reactions. The purer the colour of the laser and the shorter the X-ray burst, the sharper will be the image.

The scientists sent a short LCLS X-ray pulse of 40 to 80 femtoseconds (one femtosecond is one quadrillionth of a second) through a neon gas cell at high pressure. The X-ray beam cut a narrow channel through the gas, along which neon atoms were ionised. In this process, an inner-shell electron was kicked out of the atom, leaving a hole behind. Subsequently, one of the electrons of the outer shell filled up the hole in the inner shell, thereby emitting an X-ray pulse. According to the self-amplifying effect, this pulse stimulated the next atom to emit an X-ray pulse – an avalanche effect – so that the numerous pulses overlap and form one X-ray laser burst. The wavelength of this X-ray light was 1.46 nanometres (millionth of a millimetre). For comparison: most applied lasers in the optical range have a wavelength of 800 nanometres. The wavelength determines the size of the details which are still discernible in the corresponding light.

“The generated X-ray light is a bit weaker than that of the free-electron laser, but it has a more stable wavelength, a smoother pulse profile and a shorter pulse length,” Rohringer explains. Also free-electron lasers have a sharply defined colour. The energy – or the wavelength – of its X-ray radiation fluctuates within the range of about 15 electronvolts, at an energy of about 1000 electronvolts. The energy width of the X-ray flash of neon atoms was only 0.25 electronvolts – this is 60 times sharper.

The X-ray flashes from the free-electron laser und from neon atoms have different wavelengths. This creates a two-colour X-ray laser, with an optimal synchronisation of both pulses. This, for example, may be used to start a process with one pulse - e.g. a chemical reaction or an excitation or a structural change in a solid state – and then take a photograph of this process with the pulse of the other colour after a certain time. When the pulse is directed via a precisely defined detour, it is possible to delay it for a required short period of time, in order to photograph different stages of a chemical reaction. Since both pulses are generated at the same time, this period of time can be defined with high accuracy.

At CFEL in Hamburg, Rohringer currently investigates how this technique may be expanded. “We are exploring for example how to reach higher energies, and whether it is possible to use molecules, for example oxygen, instead of neon atoms as a laser medium.”

Original publication:

“Atomic inner-shell x-ray laser at 1.46nm pumped by an x-ray free electron laser”; Nina Rohringer, Duncan Ryan, Richard A. London, Michael Purvis, Felicie Albert, James Dunn, John D. Bozek, Christoph Bostedt, Alexander Graf, Randal Hill, Stefan P. Hau-Riege and Jorge J. Rocca; Nature, Bd. 481, S.488

Facts, background information, dossiers
  • X-ray lasers
  • SLAC
  • Colorado State University
  • lasers
  • Deutsches Elektrone…
  • Universität Hamburg
  • Lawrence Livermore…
  • Max-Planck-Gesellschaft
More about Deutsches Elektronen-Synchroton DESY
  • News

    Why van Gogh's Sunflowers are wilting

    Vincent van Gogh (1853-1890) is famous for his use of bright yellow colours. The Dutch painter used so-called chrome yellows, a class of compounds consisting of lead, chromium and oxygen. "There are different shades of the pigment, and not all of them are photochemically stable over time," ... more

    Physicists shrink particle accelerator

    An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio frequency structures. A single accelerator module is just 1.5 centimetres long and one millimetre thick. The terahertz technology holds t ... more

    X-rays reveal electron puddles in ceramic superconductors

    Using high-energy X-rays, an international team of scientists has discovered a surprising inner structure of a special class of superconductors: Within these so-called high-temperature superconductors, the electrons form puddles of varying sizes throughout the material. This finding helps t ... more

More about SLAC
  • News

    SLAC's ultrafast 'electron camera' visualizes ripples in 2-D material

    Research led by scientists from the Department of Energy's SLAC National Accelerator Laboratory and Stanford University shows how individual atoms move in trillionths of a second to form wrinkles on a three-atom-thick material. Revealed by a brand new "electron camera," one of the world's s ... more

    Antimatter catches a wave at SLAC

    A study led by researchers from the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory and the University of California, Los Angeles has demonstrated a new, efficient way to accelerate positrons, the antimatter opposites of electrons. The method may help boost the energy ... more

    Pouring fire on fuels at the nanoscale

    There are no magic bullets for global energy needs. But fuel cells in which electrical energy is harnessed directly from live, self-sustaining chemical reactions promise cheaper alternatives to fossil fuels. To facilitate faster energy conversion in these cells, scientists disperse nanopart ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE