My watch list
my.chemeurope.com  
Login  

New process enables easier isolation of carbon nanotubes

25-Jan-2016

International Institute for Carbon-Neutral Energy Research (I²CNER), Kyushu University

Hydrogen bonding allows a fluorene based polymer to grow on specific carbon nanotubes. This changes the solubility of the nanotube allowing it to be separated from other types of nanotubes.

Manufacture of longer, thinner, and uncontaminated carbon nanotubes, and successfully isolating them, have been ongoing challenges for researchers. A newly developed method has opened up new possibilities in carbon nanotube development.

Researchers at Kyushu University's Department of Applied Chemistry have developed a method for obtaining high-quality single-walled carbon nanotubes. The relatively mild process uses an outer stimulus to yield undamaged carbon nanotubes that are purer and longer, and even gives researchers the ability to sort nanotubes according to their structure and length.

Previous approaches for isolating or sorting nanotubes have required use of more aggressive techniques. These can contaminate the nanotubes and are difficult to completely remove. They also involve processes that could damage the nanotubes and impair their functionality.

"Our approach involves introducing supramolecular hydrogen-bonding polymers, followed by simply shaking the mixture and changing the polarity of the solvent, rather than applying potentially destructive sonication or chemical modification," says coauthor Naotoshi Nakashima. "In this way, we can obtain single-walled carbon nanotubes over two microns long that do a fine job maintaining structural integrity."

The new technique is particularly useful because of the mildness and selectivity of the newly designed hydrogen-bonding polymers used. The presence of fluorene moieties within them enables the specific recognition of and binding to single-walled carbon nanotubes, and specific sorting of tubes with a small diameter. This is particularly beneficial because small-diameter nanotubes are exceedingly useful for optoelectronic devices, such as thin-film transistors and sensors.

"The nanotubes we can obtain using this method can be expected to have superior characteristics to those isolated by previous procedures," says coauthor Fumiyuki Toshimitsu (Visiting Assistant Professor). "For example, by limiting contamination, their electrical and mechanical properties can be optimized. And by being able to sort nanotubes by length or chirality, we can more precisely customize those used for a particular application."

Facts, background information, dossiers
  • polymer synthesis
More about Kyushu University
  • News

    Harnessing hopping hydrogens for high-efficiency OLEDs

    Renewed investigation of a molecule that was originally synthesized with the goal of creating a unique light-absorbing pigment has led to the establishment of a novel design strategy for efficient light-emitting molecules with applications in next-generation displays and lighting. Researche ... more

    Multifunctional catalyst for poison-resistant hydrogen fuel cells

    Japanese collaboration develops catalyst that can oxidize both hydrogen and carbon monoxide to produce energy Demand for eco-friendly fuel sources is increasing as the goal of weaning off our reliance on fossil fuels becomes commonly recognized. Hydrogen represents a possible sustainable fu ... more

    Radioactive cesium concentrates in glass particles

    New research shows that most of the radioactive fallout which landed on downtown Tokyo a few days after the Fukushima accident was concentrated and deposited in non-soluble glass microparticles, as a type of 'glassy soot'. This meant that most of the radioactive material was not dissolved i ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE