To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
 My watch list
 My saved searches
 My saved topics
 My newsletter
Linear elasticity
Linear elasticity is the mathematical study of how solid objects deform and become internally stressed due to prescribed loading conditions. Linear elasticity relies upon the continuum hypothesis and is applicable at macroscopic (and sometimes microscopic) length scales. Linear elasticity is a simplification of the more general nonlinear theory of elasticity and is a branch of continuum mechanics. The fundamental "linearizing" assumptions of linear elasticity are: "small" deformations (or strains) and linear relationships between the components of stress and strain. In addition linear elasticity is only valid for stress states that do not produce yielding. These assumptions are reasonable for many engineering materials and engineering design scenarios. Linear elasticity is therefore used extensively in structural analysis and engineering design, often through the aid of finite element analysis. This article presents a summary of some of the basic equations used to describe linear elasticity mathematically in tensor notation. For an alternative presentation using engineering notation, see the article on 3D elasticity. Additional recommended knowledge
Basic equationsLinear elastodynamics is based on three tensor equations:
where:
The basic elastostatic equations are given by setting to zero in the dynamic equation. The elastostatic equations are shown in their full form on the 3D elasticity article. Just as a spring which is compressed or expanded holds potential energy, so a strained material will possess an energy density due to the deformation. The energy density due to deformation is given by: Isotropic homogeneous mediaIn isotropic media, the elasticity tensor has the form where K is the bulk modulus (or incompressibility), and μ is the shear modulus (or rigidity), two elastic moduli. If the material is homogeneous (i.e. the elasticity tensor is constant throughout the material), the three basic equations can be combined to form the elastodynamic equation: and the constitutive equation may be written: Elastostatics  the elastostatic equationIf we assume that a steady state has been achieved, in which there is no time dependence to any of the quantities involved, the elastodynamic equation becomes the elastostatic equation Thomson's solution: point force at the origin of an infinite mediumThe most important solution of this equation is for that of a force acting at a point in an infinite isotropic medium. This solution was found by William Thomson (later Lord Kelvin) in 1848 (Thomson 1848). This solution is the analog of Coulomb's law in electrostatics. A derivation is given in (Landau & Lifshitz § 8). Defining where / nu is Poisson's ratio, the solution may be expressed as u_{i} = G_{ik}f_{k} where f_{k} is the force vector being applied at the point, and G_{ik} is a tensor Green's function which may be written in Cartesian coordinates as: It may be also compactly written as: and it may be explicitly written as: In cylindrical coordinates (ρ,φ,z) it may be written as: It is particularly helpful to write the displacement in cylindrical coordinates for a point force F_{z} directed along the zaxis. Defining and as unit vectors in the ρ and z directions respectively yields: It can be seen that there is a component of the displacement in the direction of the force, which diminishes, as is the case for the potential in electrostatics, as 1/r. There is also an additional ρdirected component. Boussinesq's solution  point force at the origin of an infinite isotropic halfspaceAnother useful solution is that of a point force acting on the surface of an infinite halfspace. It was derived by Boussinesq(Boussinesq 1885) and a derivation is given in (See Landau & Lifshitz § 8). In this case, the solution is again written as a Green's tensor which goes to zero at infinity, and the component of the stress tensor normal to the surface vanishes. This solution may be written as in Cartesian coordinates as: Other solutions:
The biharmonic equationThe elastostatic equation may be written: Taking the divergence of both sides of the elastostatic equation and assuming a conservative force, () we have Noting that summed indices need not match, and that the partial derivatives commute, the two differential terms are seen to be the same and we have: from which we conclude that: Taking the Laplacian of both sides of the elastostatic equation, a conservative force will give and we have From the divergence equation, the first term on the right is zero (Note: again, the summed indices need not match) and we have: from which we conclude that: or, in coordinate free notation which is just the biharmonic equation in . Elastodynamics  The Wave equationFrom the elastodynamic equation one gets the wave equation where is the acoustic differential operator, and δ_{kl} is Kronecker delta. In isotropic media, the elasticity tensor has the form where K is the bulk modulus (or incompressibility), and μ is the shear modulus (or rigidity), two elastic moduli. If the material is homogeneous (i.e. the elasticity tensor is constant throughout the material), the acoustic operator becomes: and the acoustic algebraic operator becomes where are the eigenvalues of with eigenvectors parallel and orthogonal to the propagation direction , respectively. In the seismological literature, the corresponding plane waves are called Pwaves and Swaves (see Seismic wave). Plane wavesA plane wave has the form with of unit length. It is a solution of the wave equation with zero forcing, if and only if ω^{2} and constitute an eigenvalue/eigenvector pair of the acoustic algebraic operator This propagation condition may be written as where denotes propagation direction and is phase velocity. See also
References


This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Linear_elasticity". A list of authors is available in Wikipedia. 