To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
 My watch list
 My saved searches
 My saved topics
 My newsletter
Quantum chemistry composite methodsQuantum chemisty composite methods are ab initio postHartreeFock methods in computational chemistry that aim for high accuracy by combining the results of several calculations. They combine methods with a high level of theory and a small basis set with methods that employ lower levels of theory with larger basis sets. They are commonly used to calculate thermodynamic quantities such as enthalpies of formation, atomization energies, ionization energies and electron affinities. They aim for chemical accuracy which is usually defined as within 1 kcal/mol of the experimental value. The first systematic model chemistry of this type with broad applicability was called Gaussian1 (G1 introduced by John Pople. This was quickly replaced by the Gaussian2 (G2) which has been used extensively. The Gaussian3 (G3) was introduced later. The G2, G3 and CBS methods are available directly in the GAUSSIAN program, but the individual steps can be completed in several other ab initio programs. Additional recommended knowledge
Gaussian2 (G2)The G2 uses seven calculations:
The various energy changes are assumed to be additive so the combined energy is given by:
The second term corrects for the effect of adding the polarization functions. The third term corrects for the diffuse functions. The final term corrects for the larger basis set with the terms from steps 2, 3 and 4 preventing contributions from being counted twice. Two final corrections are made to this energy. The ZPVE is scaled by 0.8929. An empirical correction is then added to account for factors not considered above. This is called the higher level correction (HC) and is given by 0.00481 x (number of valence electrons 0.00019 x (number of unpaired valence electrons). The two numbers are obtained calibrating the results against the experimental results for a set of molecules. The scaled ZPVE and the HLC are added to give the final energy. For some molecules containing one of the third row elements Ga  Xe, a further term is added to account for spin orbit coupling. Several variants of this procedure have been used. Removing steps 3 and 4 and relying only on the MP2 result from step 5 is significantly cheaper and only slightly less accurate. This is the G2MP2 method. Sometimes the geometry is obtained using a density functional theory method such as B3LYP and sometimes the QCISD(T) method in step 1 is replaced by the coupled cluster method CCSD(T). Gaussian3 (G3)The G3 is very similar to G2 but learns from the experience with G2 theory. The 631G basis set is replaced by the smaller 631G basis. The final MP2 calculations use a larger basis set, generally just called G3large, and correlating all the electrons not just the valence electrons as in G2 theory. This gives some core correlation contributions to the final energy. The HLC takes the same form but with different empirical parameters. A Gaussian4 method has been introduced.^{[1]} An alternative to the Gaussiann methods is the correlation consistent composite method.^{[2]} Complete basis set methods (CBS)These methods by Peterson and coworkers have some similarity to G2 and G3 but contain a MP2 extrapolation to the complete basis set limit as one step. Other methodsReferences
Categories: Quantum chemistry  Computational chemistry 

This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Quantum_chemistry_composite_methods". A list of authors is available in Wikipedia. 