16-Apr-2019 - Johann Wolfgang Goethe-Universität Frankfurt (Main)

First machine-generated chemistry book published

Cooperation between Applied Computational Linguistics lab of Goethe University and Springer Nature

Springer Nature published its first machine-generated book, compiled using an algorithm developed by researchers from Goethe University. This collaboration broke new ground with the first machine-generated book to be published by a scholarly publisher. 

The book is available as a free download under the link "News Website" in the box on the right.

The book offers an overview of new research publications on lithium-ion batteries – a structured, automatically generated summary of a large number of current research articles. It gives researchers an overview of the latest research in this rapidly growing field, allowing them to manage the information efficiently. The book is available as free download. The book is available as a free download under the link "News Website" in the box on the right.

The process, developed under the direction of Assistant Professor Christian Chiarcos with the Applied Computational Linguistics (ACoLi) lab of Goethe University, consists of various components that analyse text content so that relevant publications from the content platform SpringerLink are automatically selected and processed. These peer-reviewed Springer Nature publications undergo a similarity-based clustering in order to arrange the source documents into coherent chapters and sections. 

Succinct summaries of the articles are created within the chapters. Extracted and paraphrased passages from the source documents are referenced by hyperlinks which allow readers to further explore the original document. Automatically created introductions, tables of contents and reference sections facilitate the orientation within the book. 

“This publication has allowed us to demonstrate the degree to which the challenges of machine-generated publications can be solved when experts from scientific publishers collaborate with computer linguists," explained Professor Chiarcos. “The project also enabled us to better understand the expectations of authors, editors, publishers and consumers – with regard to both scientific and economic requirements." 

Henning Schoenenberger, Director Product Data & Metadata Management at Springer Nature, added: “While research articles and books written by researchers and authors will continue to play a crucial role in scientific publishing, we foresee many different content types in academic publishing in the future: from yet entirely human-created content creation to a variety of blended man-machine text generation to entirely machine-generated text. This prototype is a first important milestone we reached, and it will hopefully also initiate a public debate on the opportunities, implications, challenges and potential risks of machine-generated content in scholarly publishing."

  • Beta Writer; "Lithium-Ion Batteries - A Machine-Generated Summary of Current Research"; Springer Nature.
Facts, background information, dossiers
More about Uni Frankfurt am Main
  • News

    Final destination deep sea: microplastics impact ocean floor even more than assumed

    Senckenberg researchers Serena Abel and Angelika Brandt, together with colleagues from the Alfred Wegener Institute – Helmholtz Centre for Polar and Marine Research (AWI) and Goethe University in Frankfurt, have investigated microplastic pollution in the Western Pacific Kuril-Kamchatka Tren ... more

    New biobattery for hydrogen storage

    The fight against climate change is making the search for carbon-neutral energy sources increasingly urgent. Green hydrogen, which is produced from water with the help of renewable energies such as wind or solar power, is one of the solutions on which hopes are pinned. However, transporting ... more

    Green chemistry needs more green toxicology

    With the early assessment of sustainable, newly developed chemicals and products it is possible to assess a potential risk of toxic substances being released at a later point in product cascades. This has been revealed in a proof-of-concept study jointly coordinated by Goethe University Fra ... more

More about Springer-Verlag