My watch list
my.chemeurope.com  
Login  

'Semi-synthetic' bacteria churn out unnatural proteins

19-Jul-2019

Adapted from Journal of the American Chemical Society 2019, DOI: 10.1021/jacs.9b02075

Researchers identified this unnatural base pair as being optimal for information storage in a semi-synthetic organism.

Synthetic biologists seek to create new life with forms and functions not seen in nature. Although scientists are a long way from making a completely artificial life form, they have made semi-synthetic organisms that have an expanded genetic code, allowing them to produce never-before-seen proteins. Now, researchers reporting in Journal of the American Chemical Society have optimized a semi-synthetic bacteria to efficiently produce proteins containing unnatural amino acids.

All of Earth's natural life forms store information using a four-letter genetic code consisting of the nucleotides deoxyadenosine (dA), deoxyguanosine (dG), deoxycytidine (dC), and deoxythymidine (dT). Within the DNA double helix, dA pairs with dT, and dG with dC, to form the "rungs" of the DNA ladder. Recently, researchers have made synthetic nucleotides that can pair up with each other. When they placed these unnatural nucleotides into genes, bacteria could replicate the DNA and convert the sequences into RNA and then proteins that contained unconventional amino acids. However, bacteria often cannot use these synthetic sequences as efficiently as the natural ones. Therefore, Lingjun Li, Floyd Romesberg and colleagues wanted to optimize the unnatural base pairs to improve protein production.

The researchers tested different combinations of unnatural base pairs in E. coli and observed which ones were replicated most efficiently and produced the highest levels of a protein. Some of the synthetic base pairs had been tested before, whereas others were new variations. The team then used these optimized base pairs to demonstrate, for the first time, a semi-synthetic organism that could make a protein containing multiple unnatural amino acids.

Facts, background information, dossiers
  • amino acids
  • nucleotides
  • proteins
  • bacteria
More about American Chemical Society
  • News

    Fungal compound deodorizes skunk smell

    Being sprayed by a skunk is no fun for people or their pets, and the strong, stinky secretions can serve as a nasty reminder of the wildlife encounter for days or weeks. Available "de-skunking" formulas often either don't work well or can irritate the skin and eyes. Now, researchers reporti ... more

    Expanding the temperature range of lithium-ion batteries

    Electric cars struggle with extreme temperatures, mainly because of impacts on the electrolyte solutions in their lithium-ion batteries. Now, researchers have developed new electrolytes containing multiple additives that work better over a wide temperature range. Lithium-ion batteries are w ... more

    3D-printed lithium-ion batteries

    Electric vehicles and most electronic devices, such as cell phones and laptop computers, are powered by lithium-ion batteries. Until now, manufacturers have had to design their devices around the size and shape of commercially available batteries. But researchers have developed a new method ... more

  • Videos

    What Makes Rubber Rubbery?

    Reactions is looking at sports science today. Sports balls owe their reliability to an unusual polymer. Learn about the chemistry of rubber the all-star’s best friend! more

    Dragon's Blood Could Save Your Life

    This week Reactions is looking at chemistry in bizarre places that could save your life. The science within the blood of the Komodo dragon or in a horseshoe crab can help with antibiotic resistance. But it doesn't end there, so we're taking a closer look at other wild places in nature that ... more

    Why is Olive Oil Awesome?

    Whether you sop it up with bread or use it to boost your cooking, olive oil is awesome. But a lot of chemistry goes on in that bottle that can make or break a product. Take the “extra virgin” standard: Chemistry tells us that a higher free-fatty-acid content leads to a lower grade, less tas ... more

More about Scripps Research Institute
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE