16-Apr-2010 - American Chemical Society (ACS)

New method for recovering pricey nanoparticles

Scientists are reporting first use of a new method that may make it easier for manufacturers to recover, recycle, and reuse nanoparticles, some of which ounce for ounce can be more precious than gold. The method, which offers a solution to a nagging problem, could speed application of nanotechnology in new generations of solar cells, flexible electronic displays, and other products, the scientists suggest. Their study appears in ACS' Langmuir.

Julian Eastoe and colleagues point out that scientists are seeking better ways to recover and reuse nanoparticles, which are barely 1/50,000th the width of a human hair. Without that technology, manufacturing processes that take advantage of nanoparticles' unusual properties might be prohibitively expensive. Recovering and recycling nanoparticles is especially difficult because they tend to form complex, hard-to-separate mixtures with other substances.

Eastoe and colleagues describe the development of a special type of microemulsion — a mixture of oil and water (mayonnaise is an edible emulsion) — that may solve this problem. In laboratory tests using cadmium and zinc nanoparticles, they showed how the oil and water in the microemulsion separated into two layers when heated. One layer contained nanoparticles that could be recovered and the other contained none. The separation process is reversible and the recovered particles retain their shape and chemical properties, which is crucial for their reuse, the scientists note.

Original publication: O Myakonkaya, C Guibert, J Eastoe, I Grillo; "Recovery of Nanoparticles Made Easy"; Langmuir, 2010, 26 (6), pp 3794-3797

Facts, background information, dossiers
More about American Chemical Society
  • News

    Biofuels from the brewery?

    Home brewing enthusiasts and major manufacturers alike experience the same result of the beer-making process: mounds of leftover grain. Once all the flavor has been extracted from barley and other grains, what's left is a protein- and fiber-rich powder that is typically used in cattle feed ... more

    Double-duty catalyst generates hydrogen fuel while cleaning up wastewater

    Hydrogen is a pollution-free energy source when it's extracted from water using sunlight instead of fossil fuels. But current strategies for "splitting" or breaking apart water molecules with catalysts and light require the introduction of chemical additives to expedite the process. Now, re ... more

    Termite gut microbes could aid biofuel production

    Wheat straw, the dried stalks left over from grain production, is a potential source of biofuels and commodity chemicals. But before straw can be converted to useful products by biorefineries, the polymers that make it up must be broken down into their building blocks. Now, researchers repo ... more

  • Videos

    What Makes Rubber Rubbery?

    Reactions is looking at sports science today. Sports balls owe their reliability to an unusual polymer. Learn about the chemistry of rubber the all-star’s best friend! more

    Dragon's Blood Could Save Your Life

    This week Reactions is looking at chemistry in bizarre places that could save your life. The science within the blood of the Komodo dragon or in a horseshoe crab can help with antibiotic resistance. But it doesn't end there, so we're taking a closer look at other wild places in nature that ... more

    Why is Olive Oil Awesome?

    Whether you sop it up with bread or use it to boost your cooking, olive oil is awesome. But a lot of chemistry goes on in that bottle that can make or break a product. Take the “extra virgin” standard: Chemistry tells us that a higher free-fatty-acid content leads to a lower grade, less tas ... more

More about University of Bristol