My watch list
my.chemeurope.com  
Login  

Visible light and nanoparticle catalysts produce desirable bioactive molecules

Simple photochemical method takes advantage of quantum mechanics

01-Nov-2019

Yishu Jiang, Northwestern University

Molecules adsorb on the surface of semiconductor nanoparticles in very specific geometries. The nanoparticles use energy from incident light to activate the molecules and fuse them together to form larger molecules in configurations useful for biological applications.

Northwestern University chemists have used visible light and extremely tiny nanoparticles to quickly and simply make molecules that are of the same class as many lead compounds for drug development.

Driven by light, the nanoparticle catalysts perform chemical reactions with very specific chemical products -- molecules that don't just have the right chemical formulas but also have specific arrangements of their atoms in space. And the catalyst can be reused for additional chemical reactions.

The semiconductor nanoparticles are known as quantum dots -- so small that they are only a few nanometers across. But the small size is power, providing the material with attractive optical and electronic properties not possible at greater length scales.

"Quantum dots behave more like organic molecules than metal nanoparticles," said Emily A. Weiss, who led the research. "The electrons are squeezed into such a small space that their reactivity follows the rules of quantum mechanics. We can take advantage of this, along with the templating power of the nanoparticle surface."

This work, published recently by the journal Nature Chemistry, is the first use of a nanoparticle's surface as a template for a light-driven reaction called a cycloaddition, a simple mechanism for making very complicated, potentially bioactive compounds.

"We use our nanoparticle catalysts to access this desirable class of molecules, called tetrasubstituted cyclobutanes, through simple, one-step reactions that not only produce the molecules in high yield, but with the arrangement of atoms most relevant for drug development," Weiss said. "These molecules are difficult to make any other way."

Weiss is the Mark and Nancy Ratner Professor of Chemistry in the Weinberg College of Arts and Sciences. She specializes in controlling light-driven electronic processes in quantum dots and using them to perform light-driven chemistry with unprecedented selectivity.

The nanoparticle catalysts use energy from visible light to activate molecules on their surfaces and fuse them together to form larger molecules in configurations useful for biological applications. The larger molecule then detaches easily from the nanoparticle, freeing the nanoparticle to be used again in another reaction cycle.

In their study, Weiss and her team used three-nanometer nanoparticles made of the semiconductor cadmium selenide and a variety of starter molecules called alkenes in solution. Alkenes have core carbon-carbon double bonds which are needed to form the cyclobutanes.

Original publication:

Yishu Jiang et al.; "Regio- and diastereoselective intermolecular [2+2] cycloadditions photocatalysed by quantum dots"; Nature Chemistry; 2019

Facts, background information, dossiers
  • catalysts
  • chemical reactions
  • semiconductor nanoparticles
  • drug development
More about Northwestern University
  • News

    Researchers examine 'living' nanomaterials for first time

    A new form of electron microscopy allows researchers to examine nanoscale tubular materials while they are "alive" and forming liquids -- a first in the field. Developed by a multidisciplinary team at Northwestern University and the University of Tennessee, the new technique, called variabl ... more

    Methane-consuming bacteria could be the future of fuel

    Known for their ability to remove methane from the environment and convert it into a usable fuel, methanotrophic bacteria have long fascinated researchers. But how, exactly, these bacteria naturally perform such a complex reaction has been a mystery. Now an interdisciplinary team at Northwe ... more

    Fluid-inspired material self-heals before your eyes

    It's hard to believe that a tiny crack could take down a gigantic metal structure. But sometimes bridges collapse, pipelines rupture and fuselages detach from airplanes due to hard-to-detect corrosion in tiny cracks, scratches and dents. A Northwestern University team has developed a new co ... more

  • Videos

    Light-Powered 3-D Printer Prints Stent

    The 3-D printer in Cheng Sun’s lab allows researchers to fabricate materials that precisely fit their designs. It uses a photo-polymer in liquid form that coverts into a solid when light is applied. The material actually forms to the shape of the projected light, creating a 3-D structure. more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE