17-Jan-2020 - American Chemical Society (ACS)

A new 'cool' blue

Inexpensive, durable and more environmentally friendly

Throughout history, people have sought vibrant blue pigments. The Egyptians and Babylonians used lapis lazuli 6,000 years ago. In 1802, a French chemist synthesized cobalt blue. More recently, in 2009 scientists discovered YInMn Blue, otherwise known as "Oregon Blue." But most of these pigments have limitations in terms of cost, stability, color or toxicity. Now, researchers in ACS Omega report a new class of 'cool' blue colorants that are inexpensive, durable and more environmentally friendly.

For the last 200 years, cobalt blue (CoAl2O4) has been a dominant commercial blue pigment because of its color intensity, ease of synthesis and versatility. However, 33% of the colorant by mass is carcinogenic Co2+, making cobalt blue relatively expensive and environmentally harmful to produce. Mas Subramanian, who discovered Oregon Blue, and colleagues at Oregon State University wanted to develop a new class of blue pigments that had enhanced color properties, reduced cost and lower cobalt content than cobalt blue.

The researchers were inspired by the crystalline structure of a light-blue mineral called hibonite. The team systematically substituted Al3+ (aluminum) ions in hibonite with Co2+, Ni2+ (nickel) or Ti4+ (titanium) ions. The resulting series of pigments showed a range of intense blue colors, some with reddish hues. The pigments were stable even when soaked in acidic or basic solutions. In contrast to cobalt blue, the new blues reflected near-infrared light, which could make them useful as 'cool pigments' in energy-saving, heat-reflecting coatings. Importantly, the Co2+ concentration in the new compounds in hibonite blues was as low as 4% by mass, making the pigments cheaper and more environmentally friendly.

Facts, background information, dossiers
More about American Chemical Society
  • News

    Microplastics could make other pollutants more harmful

    Microplastics — small plastic pieces less than five millimeters in length — are becoming a ubiquitous ecological contaminant. Studies suggest that on their own, these tiny bits are potentially harmful, and it’s unclear what effect they could have on pollutants that latch onto them. Now, res ... more

    Putting the brakes on lithium-ion batteries to prevent fires

    Lithium-ion (Li-ion) batteries are used to power everything from smart watches to electric vehicles, thanks to the large amounts of energy they can store in small spaces. When overheated, however, they’re prone to catching fire or even exploding. But recent research published in ACS’ Nano L ... more

    Storing hydrogen fuel in salts — a step toward ‘cleaner’ energy production

    Hydrogen gas could someday replace fossil fuels as a “clean” energy source, producing only water and energy. However, handling large quantities of gaseous hydrogen is cumbersome, and converting it to a liquid requires vessels that can withstand extremely high pressures. Now, researchers rep ... more

  • Videos

    What Makes Rubber Rubbery?

    Reactions is looking at sports science today. Sports balls owe their reliability to an unusual polymer. Learn about the chemistry of rubber the all-star’s best friend! more

    Why is Olive Oil Awesome?

    Whether you sop it up with bread or use it to boost your cooking, olive oil is awesome. But a lot of chemistry goes on in that bottle that can make or break a product. Take the “extra virgin” standard: Chemistry tells us that a higher free-fatty-acid content leads to a lower grade, less tas ... more

    Detecting nerve agents with the touch of a finger

    There’s a reason why farmers wear protective gear when applying organophosphate pesticides. The substances are nerve agents that are very effective at getting rid of unwanted bugs, but they can also make humans sick. Even more potent, related compounds -- organophophate nerve agents -- are ... more

  • Associations

    American Chemical Society (ACS)

    The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journal ... more

More about Oregon State University
  • News

    Artificial intelligence to help protect bees from pesticides

    Researchers in the Oregon State University College of Engineering have harnessed the power of artificial intelligence to help protect bees from pesticides. Cory Simon, assistant professor of chemical engineering, and Xiaoli Fern, associate professor of computer science, led the project, whi ... more

    New clues help explain why PFAS chemicals resist remediation

    The synthetic chemicals known as PFAS, short for perfluoroalkyl and polyfluoroalkyl substances, are found in soil and groundwater where they have accumulated, posing risks to human health ranging from respiratory problems to cancer. New research from the University of Houston and Oregon Sta ... more

    Producing hydrogen from water

    Efficiently mass-producing hydrogen from water is closer to becoming a reality thanks to Oregon State University College of Engineering researchers and collaborators at Cornell University and the Argonne National Laboratory. The scientists used advanced experimental tools to forge a clearer ... more