21-Jan-2020 - Max-Planck-Institut für Polymerforschung

Miniature double glazing

Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as quickly as possible, to houses, where good insulation is essential for energy costs. Often extremely light, porous materials such as polystyrene are used for insulation, while heavy materials such as metals are used for heat dissipation. A newly developed material can now combine both properties.

The material consists of alternating layers of wafer-thin glass plates between which individual polymer chains are inserted. "In principle, our material produced in this way corresponds to the principle of double glazing," says Markus Retsch, Professor at the University of Bayreuth. "It only shows the difference that we not only have two layers, but hundreds".

Good thermal insulation is observed perpendicular to the layers. In microscopic terms, heat is a movement or oscillation of individual molecules in the material that is transferred to neighbouring molecules. By building up many layers on top of each other, this transfer is reduced: Each new boundary layer blocks part of the heat transfer. In contrast, the heat within a layer can be conducted well - there are no interfaces that would block the heat flow. Overall, the heat transfer within a layer is 40 times higher than perpendicular to it.

The thermal conductivity along the layers is comparable to the thermal conductivity of thermal paste, which is used, among other things, to apply heat sinks to computer processors. For electrically insulating materials based on polymer/glass, this value is exceptionally high - it exceeds that of commercially available plastics by a factor of six.

For the material to function efficiently and also be transparent, the layers had to be produced with very high precision - any inhomogeneity would disturb the transparency similar to a scratch in a piece of Plexiglas. Each layer is only one millionth of a millimeter high – i.e. one nanometer. In order to investigate the homogeneity of the layer sequence, the material was characterized in the group of Josef Breu, Professor of Inorganic Chemistry at the University of Bayreuth.

"We use X-rays to illuminate the material," says Breu. "By superimposing these rays, which are reflected by the individual layers, we were able to show that the layers could be produced very precisely.”
Prof. Fytas, member of Prof. H.-J. Butt's department, was able to give an answer to the question why this layer-like structure has such extraordinarily different properties along or perpendicular to the individual glass plates. Using a special laser-based measurement, his group was able to characterize the propagation of sound waves, which is like heat also related to the movement of the material’s molecules. "This structured yet transparent material is excellent for understanding how sound propagates in different directions," says Fytas. The different sound velocities allow direct conclusions to be drawn about the direction-dependent mechanical properties, which are not accessible with any other method.

In their further work, the researchers hope to gain a better understanding of how sound and heat propagation can be influenced by the structure of the glass plate and the polymer composition. The researchers see a possible application in the field of high-performance light-emitting diodes, in which the glass-polymer layer serves on the one hand as a transparent encapsulation and on the other hand can dissipate the released heat laterally.

Facts, background information, dossiers
More about MPI für Polymerforschung
  • News

    New form of glass through molecular entanglement

    Physicists at the University of Vienna in collaboration with the Max Planck Institute for Polymer Research have discovered a new type of glass formed by long, cyclic molecules. The scientists successfully demonstrated that by making parts of the rings more mobile, the rings become more stro ... more

    How graphene nanoparticles improve the resolution of microscopes

    Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute ... more

    How to design efficient materials for OLED displays

    For applications such as light-emitting diodes or solar cells, organic materials are nowadays in the focus of research. These organic molecules could be a promising alternative to currently used semiconductors such as silicon or germanium and are used in OLED displays. A major problem is th ... more

More about Max-Planck-Gesellschaft
  • News

    Quantum logic spectroscopy unlocks potential of highly charged ions

    Scientists from the Physikalisch-Technische Bundesanstalt (PTB) and the Max Planck Institute for Nuclear Physics (MPIK) have carried out pioneering optical measurements of highly charged ions with unprecedented precision. To do this, they isolated a single Ar¹³⁺ ion from an extremely hot pl ... more

    An ultrafast microscope for the quantum world

    Processes taking place inside tiny electronic components or in molecules can now be filmed at a resolution of a few hundred attoseconds and down to the individual atom. The operation of components for future computers can now be filmed in HD quality, so to speak. Manish Garg and Klaus Kern, ... more

    New form of glass through molecular entanglement

    Physicists at the University of Vienna in collaboration with the Max Planck Institute for Polymer Research have discovered a new type of glass formed by long, cyclic molecules. The scientists successfully demonstrated that by making parts of the rings more mobile, the rings become more stro ... more

More about Uni Bayreuth