28-Oct-2020 - Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung (IFAM)

Analysis system enables targeted investigation of antiviral surfaces for material developers

Use of real-time polymerase chain reaction to test antiviral effectiveness

The need for everyday objects with antiviral surfaces is high due to the COVID 19 pandemic. It is known that the material composition of an object has an influence on the viability of viruses on surfaces. This is where the work of the Fraunhofer IFAM comes in: In cross-disciplinary research projects between material science and biology, the effect of functionalized surfaces and treatment processes on the survival time of viruses is evaluated for various materials using real-time PCR tests. The detection system is also of interest to material developers from industry who want to optimize their products with regard to antiviral effectiveness.

The time viruses can survive without their host cells depends on many factors. The ambient temperature, air humidity, UV radiation as well as the material composition and properties of a surface have a significant influence. For example, although the amount of detectable viruses decreases under all experimental conditions, investigations also show that the materials remain infectious for very different lengths of time. While the viruses survived up to 72 hours on plastic and up to 48 hours on stainless steel, no viruses could be detected on copper after four hours and on cardboard after 24 hours [1]. The aim of the research projects at Fraunhofer IFAM is to reduce the risk of contagion through contact infections of everyday materials. Antiviral coatings, treatment methods or surface modifications are used for prevention. Interested companies can accompany the development work or have their own material developments tested.

Use of real-time polymerase chain reaction (qPCR) to test antiviral effectiveness 

New solutions require a reliable method for testing their effectiveness. Reliable, fast and precise test procedures are therefore essential for the development of antimicrobial surfaces. Fraunhofer IFAM uses therefore quantitative real-time PCR (qPCR). qPCR is a method for the amplification of nucleic acids based on the principle of the conventional polymerase chain reaction (PCR). In addition, it allows for a quantification of the obtained nucleic acids. The quantification of the samples under investigation is performed by means of fluorescence measurements, which are recorded in real time during a PCR cycle. The fluorescence increases proportionally with the amount of PCR products. This allows comparing the efficiency of the tested surfaces in absolute and relative terms.

There are strict safety regulations for laboratory work with viruses for good reason. Therefore, model viruses are used which are comparable with regard to their structure, environmental stability and disinfectability, but are not human pathogenic. To carry out the work, Fraunhofer IFAM has a biological laboratory of security level 2.

  • [1] Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al.; "Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1"; The New England Journal of Medicine 382;16 (2020).

Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung (IFAM)

Recommend news PDF version / Print Add news to watchlist

Share on

Facts, background information, dossiers
  • material developments
  • coronaviruses
  • material science
  • qPCR
  • fluorescence measurements
More about Fraunhofer-Institut IFAM
  • News

    Functional coatings from the plasma nozzle

    When manufacturing products, the coating technology is a key innovation driver for almost all areas of daily life – for example, for making scratch-proof displays for smart phones or anti-bacterial surfaces in refrigerators. Other coatings protect components from corrosion or aging, for exa ... more

    Plastics and nanoparticles - the perfect combination

    These days, plastic components are vital to many fields of industry - lightweight construction, automobile manufacturing and electrical engineering, to name but a few. Now researchers have found ingenious ways to combine plastics with nanoparticles and endow them with new properties. Thanks ... more

    Sharkskin for airplanes, ships and wind energy plants

    To lower the fuel consumption of airplanes and ships, it is necessary to reduce their flow resistance, or drag. An innovative paint system makes this possible. This not only lowers costs, it also reduces CO2 emissions. The inspiration – and model – for the paint‘s structure comes from natu ... more

More about Fraunhofer-Gesellschaft