12-May-2022 - University of Minnesota

Energy researchers invent chameleon metal that acts like many others

Research could improve efficiency for storing renewable energy, making carbon-free fuels, and manufacturing sustainable materials

A team of energy researchers led by the University of Minnesota Twin Cities have invented a groundbreaking device that electronically converts one metal into behaving like another to use as a catalyst for speeding chemical reactions. The fabricated device, called a “catalytic condenser,” is the first to demonstrate that alternative materials that are electronically modified to provide new properties can yield faster, more efficient chemical processing.

The invention opens the door for new catalytic technologies using non-precious metal catalysts for important applications such as storing renewable energy, making renewable fuels, and manufacturing sustainable materials.

The research is published online in JACS Au, the leading open access journal of the American Chemical Society, where it was selected as an Editor’s Choice publication. The team is also working with the University of Minnesota Office of Technology Commercialization and has a provisional patent on the device.

Chemical processing for the last century has relied on the use of specific materials to promote the manufacturing of chemicals and materials we use in our everyday lives. Many of these materials, such as precious metals ruthenium, platinum, rhodium, and palladium, have unique electronic surface properties. They can act as both metals and metal oxides, making them critical for controlling chemical reactions.

The general public is probably most familiar with this concept in relation to the uptick in thefts of catalytic converters on cars. Catalytic converters are valuable because of the rhodium and palladium inside them. In fact, palladium can be more expensive than gold.

These expensive materials are often in short supply around the world and have become a major barrier to advancing technology.

In order to develop this method for tuning the catalytic properties of alternative materials, the researchers relied on their knowledge of how electrons behave at surfaces. The team successfully tested a theory that adding and removing electrons to one material could turn the metal oxide into something that mimicked the properties of another.

“Atoms really do not want to change their number of electrons, but we invented the catalytic condenser device that allows us to tune the number of electrons at the surface of the catalyst,” said Paul Dauenhauer, a MacArthur Fellow and professor of chemical engineering and materials science at the University of Minnesota who led the research team. “This opens up an entirely new opportunity for controlling chemistry and making abundant materials act like precious materials.”

The catalytic condenser device uses a combination of nanometer films to move and stabilize electrons at the surface of the catalyst. This design has the unique mechanism of combining metals and metal oxides with graphene to enable fast electron flow with surfaces that are tunable for chemistry.

“Using various thin film technologies, we combined a nano-scale film of alumina made from low-cost abundant aluminum metal with graphene, which we were then able to tune to take on the properties of other materials,” said Tzia Ming Onn, a post-doctoral researcher at the University of Minnesota who fabricated and tested the catalytic condensers. “The substantial ability to tune the catalytic and electronic properties of the catalyst exceeded our expectations.”

The catalytic condenser design has broad utility as a platform device for a range of manufacturing applications. This versatility comes from its nanometer fabrication that incorporates graphene as an enabling component of the active surface layer. The power of the device to stabilize electrons (or the absence of electrons called “holes”) is tunable with varying composition of a strongly insulating internal layer. The device’s active layer also can incorporate any base catalyst material with additional additives, that can then be tuned to achieve the properties of expensive catalytic materials.

“We view the catalytic condenser as a platform technology that can be implemented across a host of manufacturing applications,” said Dan Frisbie, a professor and head of the University of Minnesota Department of Chemical Engineering and Materials Science and research team member. “The core design insights and novel components can be modified to almost any chemistry we can imagine.”

The team plans to continue their research on catalytic condensers by applying it to precious metals for some of the most important sustainability and environmental problems. With financial support from the U.S. Department of Energy and National Science Foundation, several parallel projects are already in progress to store renewable electricity as ammonia, manufacture the key molecules in renewable plastics, and clean gaseous waste streams.

Facts, background information, dossiers
More about University of Minnesota
  • News

    First fully 3D-printed, flexible OLED display

    In a groundbreaking new study, researchers at the University of Minnesota Twin Cities used a customized printer to fully 3D print a flexible organic light-emitting diode (OLED) display. The discovery could result in low-cost OLED displays in the future that could be widely produced using 3D ... more

    Exploding and weeping ceramics

    From coffee cups to bathroom tiles, ceramics are brittle.  Subject to the slightest deformation, they shatter. On the other end of the spectrum of materials, some of the most deformable materials known - that also support large stresses while they deform - are shape memory alloys.  The orig ... more

    New technology will allow important metals to be made more efficiently

    University of Minnesota Twin Cities College of Science and Engineering researchers have invented a cheaper, safer, and simpler technology that will allow a “stubborn” group of metals and metal oxides to be made into thin films used in many electronics, computer components, and other applica ... more

  • Videos

    New method for making zeolite nanosheets for ultra-selective membranes

    A new method to make zeolite nanosheets leads to high performance membranes for separation and purification processes. Credit: Prashant Kumar and Michael Tsapatsis, University of Minnesota more

    Video of heat transfer at the nanoscale

    This video made with the University of Minnesota ultrafast electron microscope (UEM) shows the initial moments of thermal-energy motion in an imperfect semiconducting material. The video shows nanoscale waves of energy, called phonons, moving at about 6 nanometers (0.000000006 meters) per p ... more