31-May-2012 - Sandia National Laboratories

Sandia Labs technology used in Fukushima cleanup

A Sandia National Laboratories technology has been used to remove radioactive material from more than 43 million gallons of contaminated wastewater at Japan's damaged Fukushima Daiichi nuclear power plant. Sandia researchers had worked around the clock following the March 2011 disaster to show the technology worked in seawater, which was pumped in to cool the plant's towers.

"It's the kind of thing that sends a chill," said Mark Rigali, manager of the geochemistry group at Sandia. "We've helped really make a difference in the world. These are the kinds of successes we want to see with all our intellectual property."

UOP LLC, a Honeywell company, late last year renegotiated its license of the Sandia technology being used at Fukushima. The revised license makes UOP the exclusive U.S. manufacturer of crystalline silico-titanate, or CST, a molecular sieve that can separate highly volatile elements from radioactive wastewater.

"Sandia has a very important and longstanding business relationship with UOP," said Bianca Thayer of Sandia's Intellectual Property Management, Alliances and Licensing Department. "This is an opportunity to grow our partnership with the company."

The late Sandia chemist Bob Dosch and Texas A&M chemical engineering professor Ray Anthony were leaders of the team that developed CSTs in the early 1990s response to a need for materials to remove radioactive contaminants from wastewater. They found that a certain class of synthetic zeolite is more effective in capturing some radioactive elements, like cesium, than other technologies.

They created CSTs: inorganic, molecularly engineered ion exchangers that can be sized specifically for cesium and other elements. When high-level radioactive elements are removed from contaminated water with CSTs, the remaining lower-level radioactive waste can be treated in a more economical and less hazardous way.

UOP worked with Sandia through a Cooperative Research & Development Agreement (CRADA) to produce a commercial-scale manufacturing procedure for the CSTs. "We developed a technology to bind the material into a beaded form so it could be used in ion exchange columns," said Dennis Fennelly, UOP marketing manager.

The company licensed and began commercializing the technology in 1994. It was one of the first licenses issued by Sandia, which had begun its tech transfer program just a year earlier.

Rigali said CST technology was among the Labs' first Laboratory Directed Research and Development (LDRD) commercial product successes. "It was a very early CRADA success as well," he said. "There was program money on our side and there was interest on the commercial side, so the two groups got together and developed the CSTs as a commercial product."

Facts, background information, dossiers
More about Sandia National Laboratories
  • News

    The most wear-resistant metal alloy in the world

    If you're ever unlucky enough to have a car with metal tires, you might consider a set made from a new alloy engineered at Sandia National Laboratories. You could skid -- not drive, skid -- around the Earth's equator 500 times before wearing out the tread. Sandia's materials science team ha ... more

    A splash of detergent makes catalytic compounds more powerful

    Researcher David Rosenberg examines images of a white powder under a powerful scanning electron microscope. Up close, the powder looks like coarse gravel, a heap of similar but irregular chunks. Then he looks at a second image — the same material produced by colleague Hongyou Fan instead of ... more

    Superior hydrogen catalyst just grows that way

    Replacing your everyday gas guzzler with a hydrogen fueled car could drastically reduce your carbon footprint. So why don't we all make the switch? One of reasons we don't is the expensive platinum catalyst required to operate hydrogen fuel cells efficiently. Research led by Sandia National ... more

More about UOP