18-Nov-2016 - University of Maryland

Solar smart window could offer privacy and light control on demand

Smart windows get darker to filter out the sun's rays on bright days, and turn clear on cloudy days to let more light in. This feature can help control indoor temperatures and offers some privacy without resorting to aids such as mini-blinds. Now scientists report a new development in this growing niche: solar smart windows that can turn opaque on demand and even power other devices.

Most existing solar-powered smart windows are designed to respond automatically to changing conditions, such as light or heat. But this means that on cool or cloudy days, consumers can't flip a switch and tint the windows for privacy. Also, these devices often operate on a mere fraction of the light energy they are exposed to while the rest gets absorbed by the windows. This heats them up, which can add warmth to a room that the windows are supposed to help keep cool. Jeremy Munday and colleagues wanted to address these limitations.

The researchers created a new smart window by sandwiching a polymer matrix containing microdroplets of liquid crystal materials, and an amorphous silicon layer -- the type often used in solar cells -- between two glass panes. When the window is "off," the liquid crystals scatter light, making the glass opaque. The silicon layer absorbs the light and provides the low power needed to align the crystals so light can pass through and make the window transparent when the window is turned "on" by the user. The extra energy that doesn't go toward operating the window is harvested and could be redirected to power other devices, such as lights, TVs or smartphones, the researchers say.

Facts, background information, dossiers
More about University of Maryland
  • News

    Better Than Cyclodextrins

    Molecular containers that remove drugs, toxins, or malodorous substances from the environment are called sequestering agents. Scientists have developed a class of molecular containers that specifically sequester neurotransmitter antagonists. The barrel-shaped molecules called Pillar[n]MaxQ ... more

    High-performance electrolyte solves battery puzzle

    Lithium ion batteries have already become an integral part of our everyday life. However, our energy-hungry society demands longer life, faster charging, and lighter batteries for a variety of applications from electric vehicles to portable electronics, including lightening the load a soldi ... more

    Post-Lithium Technology

    Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions. A major challenge, however, is the development of stable electrodes that combine high energy densities with fast charge and discharge rat ... more