15-Feb-2017 - The University of Chicago

Turning up the heat for perfect (nano)diamonds

Quantum mechanics, the physics that governs nature at the atomic and subatomic scale, contains a host of new physical phenomena to explore quantum states at the nanoscale. Though tricky, there are ways to exploit these inherently fragile and sensitive systems for quantum sensing. One nascent technology in particular makes use of point defects, or single-atom misplacements, in nanoscale materials, such as diamond nanoparticles, to measure electromagnetic fields, temperature, pressure, frequency and other variables with unprecedented precision and accuracy.

Quantum sensing could revolutionize medical diagnostics, enable new drug development, improve the design of electronic devices and more.

For use in quantum sensing, the bulk nanodiamond crystal surrounding the point defect must be highly perfect. Any deviation from perfection, such as additional missing atoms, strain in the crystalline lattice of the diamond, or the presence of other impurities, will adversely affect the quantum behavior of the material. Highly perfect nanodiamonds are also quite expensive and difficult to make.

A cheaper alternative, say researchers at Argonne National Laboratory and the University of Chicago, is to take defect-ridden, low-quality, commercially manufactured diamonds, and then "heal" them.

In a paper the researchers describe a method to heal diamond nanocrystals under high-temperature conditions, while visualizing the crystals in three dimensions using an X-ray imaging technique.

"Quantum sensing is based on the unique properties of certain optically active point defects in semiconductor nanostructures," said F. Joseph Heremans, an Argonne National Laboratory staff scientist and co-author on the paper.

These defects, such as the nitrogen-vacancy (NV) centers in diamond, are created when a nitrogen atom replaces a carbon atom adjacent to a vacancy in the diamond lattice structure. They are extremely sensitive to their environment, making them useful probes of local temperatures, as well as electric and magnetic fields, with a spatial resolution more than 100 times smaller than the thickness of a human hair.

Because diamonds are biologically inert, quantum sensors based on diamond nanoparticles, which can operate at room temperature and detect several factors simultaneously, could even be placed within living cells, where they could, according to Heremans, "image systems from the inside out."

Heremans and his colleagues, including Argonne's Wonsuk Cha and Paul Fuoss, as well as David Awschalom of the University of Chicago, set out to map the distribution of the crystal strain in nanodiamonds and to track the healing of these imperfections by subjecting them to high temperatures, up to 800 degrees Celsius in an inert helium environment.

"Our idea of the 'healing' process is that gaps in the lattice are filled as the atoms move around when the crystal is heated to high temperatures, thereby improving the homogeneity of the crystal lattice," said Stephan Hruszkewycz, also a staff scientist at Argonne and lead author on the paper.

This nanodiamond healing was monitored with a 3-D microscopy method called Bragg coherent diffraction imaging, performed by subjecting the crystals to a coherent X-ray beam at the Advanced Photon Source at Argonne. The X-ray beam that scatters off the nanodiamonds was detected and used to reconstruct the 3-D shape of the nanocrystal, "and, more importantly, the strain state of the crystal," Hruszkewycz said.

The researchers found that nanodiamonds "shrink" during the high-temperature annealing process, and surmise that this occurs because of a phenomenon called graphitization. This phenomenon occurs when the surface of the material is converted from the normal diamond lattice arrangement into graphite, a single layer of chicken-wire-like arranged carbon atoms.

The study marks the first time that Bragg coherent diffraction imaging has been shown to be useful at such high temperatures, a capability that, Hruszkewycz said, "enables the exploration of structural changes in important nanocrystalline materials at high temperatures that are difficult to access with other microscopy techniques."

Hruszkewycz added that the research represents "a significant step towards developing scalable methods of processing inexpensive, commercial nanodiamonds for quantum sensing and information processing."

Facts, background information, dossiers
  • diamonds
  • temperature
  • nanodiamonds
  • functional materials
  • Bragg coherent diff…
  • nitrogen-vacancy
  • pressure
More about University of Chicago
  • News

    On the road to conductors of the future

    Superconducting wires can transport electricity without loss. This would allow for less power production, reducing both costs and greenhouse gasses. Unfortunately, extensive cooling stands in the way, because existing superconductors only lose their resistance at extremely low temperatures. ... more

    Scientists break record for highest-temperature superconductor

    University of Chicago scientists are part of an international research team that has discovered superconductivity--the ability to conduct electricity perfectly--at the highest temperatures ever recorded. Using advanced technology at UChicago-affiliated Argonne National Laboratory, the team ... more

    Breakthrough could enable cheaper infrared cameras

    There's an entire world our eyes miss, hidden in the ranges of light wavelengths that human eyes can't see. But infrared cameras can pick up the secret light emitted as plants photosynthesize, as cool stars burn and batteries get hot. They can see through smoke and fog and plastic. But infr ... more

More about Argonne National Laboratory
  • News

    Less than a nanometer thick, stronger and more versatile than steel

    Scientists create stable nanosheets containing boron and hydrogen atoms with potential applications in nanoelectronics and quantum information technology. What's thinner than thin? One answer is two-dimensional materials -- exotic materials of science with length and width but only one or t ... more

    Inside the battery in 3D

    Despite worldwide use of lithium batteries, the exact dynamics of their operation has remained elusive. X-rays have proven to be a powerful tool for peering inside of these batteries to see the changes that occur in real time. Using the ultrabright X-rays of the Advanced Photon Source (APS) ... more

    Turning carbon dioxide into liquid fuel

    Catalysts speed up chemical reactions and form the backbone of many industrial processes. For example, they are essential in transforming heavy oil into gasoline or jet fuel. Today, catalysts are involved in over 80 percent of all manufactured products. A research team, led by the U.S. Depa ... more

  • Videos

    Argonne News Brief: Oleo Sponge soaks up oil spills from water

    Argonne National Laboratory researchers have invented a technology for recovering oil and refined petroleum products from bodies of water. Oleo Sponge offers several key advantages over the technologies and techniques that are currently used to combat this problem. more

More about American Institute of Physics