L‘effet caméléon: Capteurs et écrans durables

Un matériau élastique qui change de couleur, conduit l'électricité, peut être imprimé en 3D et est en outre biodégradable ?

05.07.2023 - Suisse
Empa

Le logo de l'Empa imprimé en 3D à partir du nouveau mélange HPC change de couleur lorsqu'il est chauffé.

Fabriquer des capteurs et des écrans biodégradables par impression 3D ? Des chercheurs du laboratoire "cellulose & Wood Materials" de l'Empa ont mis au point un matériau à base de cellulose qui permet précisément de réaliser cela. Le mélange d'hydroxpropyl-cellulose, d'eau, de Nanotubes de carbone et de nanofibres de cellulose change de couleur en fonction de la température et de l'étirement - et ce, sans aucun ajout de pigments.

Empa

Cellulose multicolore : Le logo de l‘Empa imprimé en 3D à partirdu nouveau mélange HPC change de couleurlorsqu‘il est chauffé.

Un matériau élastique qui change de couleur, conduit l'électricité, peut être imprimé en 3D et est en outre biodégradable ? Ce n'est pas seulement un vœu pieux de la science : c'est précisément cette solution miracle que les chercheurs de l'Empa du laboratoire "Cellulose & Wood Materials" à Dübendorf ont fabriquée à base de cellulose et de nanotubes de carbone.

Les chercheurs ont utilisé comme matière première de l'hydroxypropylcellulose (HPC), qui est notamment utilisée comme excipient dans les produits pharmaceutiques, les cosmétiques et les aliments. L'une des particularités de la HPC est qu'elle forme des cristaux liquides après l'ajout d'eau. Ces cristaux liquides ont une propriété remarquable : selon leur structure cristalline - qui dépend entre autres de la concentration en HPC - ils irisent dans les couleurs les plus diverses - bien qu'ils soient en fait sans couleur ou sans pigment. Ce phénomène, appelé coloration structurelle, est bien connu dans la nature : Les plumes de paon, les ailes de papillon et la peau du caméléon ne doivent pas tout ou partie de leur coloration multicolore à des colorants, mais à des structures microscopiques qui "divisent" la lumière du jour (blanche) incidente en ses couleurs spectrales et ne réfléchissent que certaines longueurs d'onde - c'est-à-dire certaines couleurs.

La couleur structurelle du HPC ne change pas seulement avec la concentration, mais aussi avec la température. Pour mieux exploiter cette propriété, l'équipe de Gustav Nyström a ajouté 0,1 % de nanotubes de carbone au mélange de HPC et d'eau. Cela rend le liquide conducteur d'électricité et permet aux chercheurs de contrôler la température - et donc la couleur des cristaux liquides - en appliquant une tension électrique. Bonus : Le carbone agit comme un absorbeur à large spectre, ce qui rend les couleurs plus intenses. Grâce à un autre additif, une petite quantité de nanofibres de cellulose, l'équipe de Gustav Nyström a en outre réussi à rendre le mélange imprimable en 3D sans compromettre la coloration et la conductivité.

Capteurs et écrans durables

Grâce à l'impression 3D, les chercheurs ont fabriqué différents exemples d'applications à partir de ce nouveau mélange de cellulose. Parmi eux, un capteur de contrainte qui change de couleur en fonction de la déformation mécanique, ainsi qu'un simple écran composé de sept segments commandés électriquement. "Nous avons déjà développé dans notre laboratoire différents composants électroniques à base de cellulose, comme des batteries et des capteurs", explique Xavier Aeby, co-auteur de l'étude. "C'est maintenant la première fois que nous avons également pu développer un écran à base de cellulose".

À l'avenir, l'encre à base de cellulose pourrait trouver de nombreuses applications très différentes, par exemple pour des capteurs de température et de déformation, pour le contrôle de la qualité des aliments ou pour le diagnostic biomédical. "Les matériaux durables qui peuvent être imprimés en 3D présentent un grand intérêt, notamment pour des applications dans l'électronique biodégradable et pour l'internet des objets", explique le directeur du laboratoire, Gustav Nyström. "Il y a encore beaucoup de questions ouvertes sur la manière dont la coloration structurelle se forme en fait et comment elle peut être modifiée par différents additifs ou par des influences environnementales". C'est ce que Gustav Nyström et son équipe veulent continuer à explorer dans l'espoir de découvrir d'autres phénomènes et applications intéressants.

Autres actualités du département science

Ces produits pourraient vous intéresser

SprayMaster inspex

SprayMaster inspex de LaVision

Contrôle de qualité pour votre pulvérisation grâce à l'analyse numérique du spray et des particules

Fiable, automatisée, numérique - La mesure de géométrie de votre vaporisation en temps réel

systèmes d'analyse de spray
FireSting-PRO

FireSting-PRO de PyroScience

Un seul dispositif pour des mesures de plusieurs analytes dans un seul échantillon

PH-mètre, oxygénomètre et thermomètre optiques, aussi pour les capteurs stériles pH pré-calibrés

appareils de mesure
VEGAPULS 6X

VEGAPULS 6X de VEGA Grieshaber

6X : ou comment améliorer simplement les process

Un capteur radar adapté à toutes les applications - que le produit à mesurer soit liquide ou solide

technique de mesure de niveau
Loading...

Actualités les plus lues

Plus actualités de nos autres portails

Si près que même
les molécules
deviennent rouges...