My watch list
my.chemeurope.com  
Login  

Spin-current generation gets mid-IR boost with plasmonic metamaterial

12-Oct-2017

Satoshi Ishii

This is a rendering of the PMA spintronic device that shows photo-induced voltage generation by the photo-spin-voltaic (PSV) effect and the longitudinal spin Seebeck effect (LSSE).

Over the last few years, researchers have demonstrated that light can serve as a spin-current generator, creating currents of angular momentum, in optical nanostructures known as plasmonic absorbers, opening up a new branch of spintronics called opto-spintronics.

Recently, researchers have begun to use metamaterials, engineered composites that have unique properties not found in nature, to enhance the absorption rates of plasmonic absorbers. These properties include the size, shape and arrangement of the nanoparticles that manipulate electromagnetic waves, absorbed as light, to achieve what is impossible with conventional materials.

Researchers in Japan used a trilayered metamaterial to develop a wavelength-selective plasmonic metamaterial absorber (PMA) on top of a spintronic device to enhance the generation of spin currents from the heat produced in the mid-infrared regime.

The could be incorporated in a range of applications from thermophotovoltaics and ultrathin film solar cells to light and thermal detectors.

"Our work is the first to combine mid-infrared plasmonic metamaterials with spintronic devices. This unique combination enables stronger light absorption and shows the excellent tenability of these metamaterials' resonance wavelengths," said Satoshi Ishii, a researcher at the National Institute for Materials Science and co-author of the paper.

The researchers created a spintronic device made up of separate layers of platinum (Pt) and yttrium iron garnet (YIG). They then placed layers of alumina and aluminum on the Pt layer to create the PMA on top of the spintronic device. In this case, Pt is used as the bottommost layer in the PMA and also as the top layer of the spintronic device.

The team in Japan showed that a spin current can be generated directly from the absorbed photons in the Pt film, a paramagnetic metal, that is placed over YIG, which is a magnetic insulator. Because light is confined in the subwavelength regime in the PMA, electromagnetic fields are strongly enhanced before the light is absorbed. After light is absorbed by the Pt film, it generates heat, which is also enhanced by the PMA.

In other words, when incident light hits the device in the mid-infrared range, the PMA exhibits a strong plasmonic resonance, which maximizes the absorption. A fraction of the absorbed light partially triggers the photo-spin-voltaic (PSV) effect in the Pt/YIG spintronic device, a relatively new method for directly generating spin currents via photons in a nonmagnetic metal layered with a magnetic insulator. The remaining light heats up the device to produce a thermal gradient across the magnetic material thickness, which in turn induces a thermally generated spin voltage in what is called the longitudinal spin Seebeck effect (LSSE).

"In short, owing to the plasmonic metamaterial absorber," said Ken-ichi Uchida, another NIMS researcher and co-author of the paper, "the device allows the electrical detection of a specific wavelength through the PSV effect and the LSSE."

Facts, background information, dossiers
More about National Institute for Materials Science
  • News

    Observation of anisotropic magneto-Peltier effect

    For the first time in the world, NIMS and Tohoku University jointly observed an anisotropic magneto-Peltier effect--a thermoelectric conversion phenomenon in which simple redirection of a charge current in a magnetic material induces heating and cooling. Thermoelectric heating and cooling a ... more

    Diamond-based circuits can take the heat for advanced applications

    When power generators like windmills and solar panels transfer electricity to homes, businesses and the power grid, they lose almost 10 percent of the generated power. To address this problem, scientists are researching new diamond semiconductor circuits to make power conversion systems mor ... more

    All in one against CO2

    A "self-heating" boron catalyst that makes particularly efficient use of sunlight to reduce carbon dioxide (CO2) serves as a light harvester, photothermal converter, hydrogen generator, and catalyst in one. Researchers introduce a photothermocatalytic reaction that requires no additives bey ... more

More about American Institute of Physics
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE