My watch list
my.chemeurope.com  
Login  

High frequency



high frequency (HF)
Cycles per second: 3 MHz to 30 MHz

Wavelength: 100 m to 10 m

High frequency (HF) radio frequencies are between 3 and 30 MHz. Also known as the decameter band or decameter wave as the wavelengths range from one to ten decameters. Shortwave (2.310 - 25.820 MHz) overlaps and is slightly lower than HF.

Additional recommended knowledge

Since the ionosphere often reflects HF radio waves quite well (a phenomenon known as skywave), this range is extensively used for medium and long range terrestrial radio communication. However, suitability of this portion of the spectrum for such communication varies greatly with a complex combination of factors:

  • Sunlight/darkness at site of transmission and reception
  • Transmitter/receiver proximity to terminator
  • Season
  • Sunspot cycle
  • Solar activity
  • Polar aurora
  • Maximum usable frequency
  • Lowest usable high frequency
  • Frequency of operation within the HF range

The high frequency band is very popular with amateur radio operators, who can take advantage of direct, long-distance (often inter-continental) communications and the "thrill factor" resulting from making contacts in variable conditions. International shortwave broadcasting utilizes this set of frequencies, as well as a seemingly declining number of "utility" users (marine, aviation, military, and diplomatic interests), who have, in recent years, been swayed over to less volatile means of communication (for example, via satellites), but may maintain HF stations after switch-over for back-up purposes. However, the development of Automatic Link Establishment technology based on MIL-STD-188-141A and MIL-STD-188-141B for automated connectivity and frequency selection, along with the high costs of satellite usage, have led to a renaissance in HF usage among these communities. The development of higher speed modems such as those conforming to MIL-STD-188-110B which support data rates up to 9600 bit/s has also increased the usability of HF for data communications. Other standards development such as STANAG 5066 provides for error free data communications through the use of ARQ protocols. (See also High Frequency Internet Protocol)

CB radios operate in the higher portion of the range (around 27 MHz), as do some studio-to-transmitter (STL) radio links. Some modes of communication, such as continuous wave morse code transmissions (especially by amateur radio operators) and single sideband voice transmissions are more common in the HF range than on other frequencies, because of their bandwidth-conserving nature, but broadband modes, such as TV transmissions, are generally prohibited by HF's relatively small chunk of electromagnetic spectrum space.

Noise, especially man-made interference from electronic devices, tends to have a great effect on the HF bands. In recent years, concerns have risen among certain users of the HF spectrum over "broadband over power lines" (BPL) Internet access, which is believed to have an almost destructive effect on HF communications. This is due to the frequencies on which BPL operates (typically corresponding with the HF band) and the tendency for the BPL "signal" to leak from power lines. Some BPL providers have installed "notch filters" to block out certain portions of the spectrum (namely the amateur radio bands), but a great amount of controversy over the deployment of this access method remains.

See also


Radio spectrum
ELF SLF ULF VLF LF MF HF VHF UHF SHF EHF
3 Hz 30 Hz 300 Hz 3 kHz 30 kHz 300 kHz 3 MHz 30 MHz 300 MHz 3 GHz 30 GHz
30 Hz 300 Hz 3 kHz 30 kHz 300 kHz 3 MHz 30 MHz 300 MHz 3 GHz 30 GHz 300 GHz

Further reading

  • Maslin, N.M. "HF Communications - A Systems Approach". ISBN 0-273-02675-5, Taylor & Francis Ltd, 1987
  • Johnson, E.E., et al., "Advanced High-Frequency Radio Communications". ISBN 0-89006-815-1, Artech House, 1997
  • V. Narayanamurti, et al., "Selective Transmission of High-Frequency Phonons by a Superlattice: The "Dielectric" Phonon Filter". Phys. Rev. Lett. 43, 2012–2016 (Issue 27 – 31 December 1979).
  • Boulos-Paul Bejjani, et al., "Transient Acute Depression Induced by High-Frequency Deep-Brain Stimulation". New England Journal of Medicine, Volume 340:1476-1480 May 13, 1999 Number 19. Massachusetts Medical Society.
  • H. C. Liu, "Analytical model of high-frequency resonant tunneling: The first-order ac current response". Phys. Rev. B 43, 12538–12548 (Issue 15 – 15 May 1991).
  • Sipila, M., et al., "High-frequency periodic time-domain waveform measurement system". IEEE Transactions on Microwave Theory and Techniques, Volume 36, Issue 10, pg. 1397-1405, Oct 1988. ISSN 0018-9480 INSPEC 3291255 DOI 10.1109/22.6087
  • Morched, A., et al., "A high frequency transformer model for the EMTP". IEEE Transactions on Power Delivery, Volume 8, Issue 3, pg. 1615-1626, Jul 1993. ISSN 0885-8977 INSPEC 4581865 DOI 10.1109/61.252688

External articles

  • Tomislav Stimac, "Definition of frequency bands (VLF, ELF... etc.)". IK1QFK Home Page (vlf.it).
  • Douglas C. Smith, High Frequency Measurements Web Page; Index and Technical Tidbits. D. C. Smith Consultants, Los Gatos, CA.
  • High Frequency Propagation Models, its.bldrdoc.gov.
  • High Frequency Wave Propagation, cscamm.umd.edu.
  • "Grounding for Low- and High-Frequency Circuits" (PDF)
  • "High frequency noise" (PDF)
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "High_frequency". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE