04-Jan-2018 - Fraunhofer-Institut für Angewandte Festkörperphysik (IAF)

Sensor the size of a nitrogen atom investigates hard drives

Integrated circuitry is becoming increasingly complex. These days a Pentium processor contains some 30 million transistors. And the magnetic structures found in hard drives measure just 10 to 20 nanometers across – less than a flu virus at 80 to 120 nanometers in diameter. Dimensions are rapidly approaching the realm of quantum physics and, already, researchers at the Fraunhofer Institute for Applied Solid State Physics IAF in Freiburg are applying themselves to the quantum technology challenges of tomorrow. Together with colleagues at the Max Planck Institute for Solid State Research, they are developing a quantum sensor that will be able to precisely measure the tiny magnetic fields we can expect to see in the next generation of hard discs. The sensor itself is just slightly larger than a nitrogen atom, with a synthetic diamond to act as a substrate.

Diamond has a variety of advantages quite apart from its considerable mechanical and chemical stability. For instance, one can implant foreign atoms such as boron or phosphorus, thereby turning the crystals into semiconductors. Diamond is also the perfect material for optical circuits. But perhaps its greatest attribute is its impressive thermal conductivity, with the strength of the carbon atom bonds ensuring that heat is rapidly dissipated.

Over the past decades, Fraunhofer IAF has developed optimized systems for producing diamonds. The process for mass production takes places in a plasma reactor, and Freiburg possesses many of these silver-colored devices. Plasma is ignited to generate temperatures of 800 to 900 degrees Celsius so that, when gas is fed into the chamber, diamond layers can form on the square-shaped substrate. The diamond crystals have an edge length of between three and eight millimeters, and are then separated from the substrate and polished using a laser.

Preparing the diamond to act as a magnetic detector

Manufacturing the innovative quantum sensor requires a particularly pure crystal, which has inspired further improvements in the process. For instance, in order to grow ultra-pure diamond layers, the methane that provides the carbon for the diamond is pre-filtered using a zirconium filter. On top of that, the gas must be isotopically pure, since only 12C – a stable isotope of the carbon atom – has zero nuclear spin, which is a prerequisite for the magnetic sensor later on. The hydrogen also undergoes a purification process, after which the ultra-pure single crystal diamond must be prepared for its role as a magnetic detector. Here there are two options: either you insert a single nitrogen atom into the extremely fine tip, or you add nitrogen at the final phase of the diamond production process. After that, the diamond tip is honed in oxygen plasma using an etching process in the institute’s own cleanroom. The final result is an extremely fine diamond tip that resembles that of an atomic force microscope. The key to the whole design is the added nitrogen atom together with a neighboring vacancy in the crystal structure.

This combined nitrogen-vacancy center acts as the actual sensor, emitting light when it is exposed to a laser and microwaves. If there is a magnet nearby, it will vary in its light emission. Experts call this electron spin resonance spectroscopy. Not only can this technique detect magnetic fields with nanometer accuracy, it can determine their force as well, opening up an extraordinary range of applications. For instance, the tiny diamond tips can be used to monitor hard drive quality. These data storage devices are tightly packed and there are always tiny errors. The quantum sensor can identify defective data segments so that they are excluded from the disc reading and writing process. This reduces the defect rate, which is soaring as miniaturization continues apace, and cuts down on production costs.

Quantum sensors could measure brain activity

The tiny sensor can potentially be applied in a wide range of scenarios, since there are weak magnetic fields everywhere, even in the brain. “Whenever electrons move, they generate a magnetic field,” says IAF expert Christoph Nebel. So when we think or feel, our brains are generating magnetic fields. Researchers are keen to localize this brain activity to determine the areas of the brain that are responsible for a certain function or feeling. This can be done directly by measuring brainwaves using electrodes, but the results are very imprecise. Magnetic field measurements offer far better results. However, the sensors in use at the moment have one significant disadvantage in that they must be cooled with liquid nitrogen. Drawing on the extreme thermal conductivity of diamond, the new technology can operate at room temperature without the need for any cooling. For this application, instead of using fine tips you would use tiny platelets that incorporate multiple nitrogen-vacancy centers. Each center supplies a point in the image and, together, a detailed picture.

Currently, however, Christoph Nebel and his team are focusing their attention on researching and optimizing diamond as a high-tech material. This application in quantum sensor technology is a promising beginning.

Facts, background information, dossiers
  • magnetic fields
  • magnetic field detection
  • diamonds
More about Fraunhofer-Institut IAF
  • News

    Fingerprint spectroscopy within a millisecond

    To guarantee high quality pharmaceuticals, manufacturers need not only to control the purity and concentration of their own products, but also those of their suppliers. Researchers at the Fraunhofer Institute for Applied Solid State Physics IAF have developed a measuring system capable of i ... more

    On-site detection of hazardous substances

    Together with partners from research and industry, Fraunhofer IAF has developed a hand-held scanner for hazardous substances within the EU project CHEQUERS. The sensor detects explosive, toxic and other dangerous substances in real time and will help emergency personnel with on-site detecti ... more

    New Material to Push the Boundaries of Silicon-Based Electronics

    The electronics market is growing constantly and so is the demand for increasingly compact and efficient power electronic systems. The predominant electronic components based on silicon will in foreseeable future no longer be able to meet the increasing industrial requirements.This is why s ... more

More about MPI für Festkörperforschung
  • News

    Solar-battery effect enables a new light-driven organic microswimmer to operate in the dark

    The propulsion resulting from external sources of energy makes microswimmers highly attractive, active devices that show great promise for potential applications in fields of biomedical and environmental technology. Targeted drug delivery in hard-to-reach areas of the body is one example. A ... more

    A touch of gold and silver

    Metals are usually characterized by good electrical conductivity. This applies in particular to gold and silver. However, researchers from the Max Planck Institute for Solid State Research in Stuttgart, together with partners in Pisa and Lund, have now discovered that some precious metals l ... more

    The Higgs boson and superconductivity

    Without the Higgs mechanism, particles would have no mass. The Higgs boson, which was discovered in 2012, is therefore also referred to as the “God particle”. It arises as an oscillating excitation of the Higgs field, which penetrates the world. Superconductivity displays similar properties ... more

  • Videos

    A Universal Language

    The phenomenon of fundamental constants and the Quantum Hall Effect – Featuring the Nobel Prize Laureate, Klaus von Klitzing more

More about Fraunhofer-Gesellschaft
  • News

    Localized growth of silicon crystals

    Four scientists from Freiburg have succeeded for the first time to simulate the localized growth of silicon crystals using shear-induced amorphization and recrystallization. In the future, experts could use this concept to tailor crystalline silicon structures for nanotechnology application ... more

    Thermal storage for the energy transition

    In Germany, 55 percent of final energy consumption goes towards heating and cooling. However, a lot of heat dissipates unused because it is not generated as and when required. Thermal storage using zeolite material allows heat to be stored for long periods of time without losing any. Fraunh ... more

    New catalysts for fuel cells

    Fuel cells are typically applied to generate electrical energy from hydrogen or methanol. Nanoscale catalysts get the process going - but until now, the quality of these materials has varied significantly. The CAN research division of the Fraunhofer Institute for Applied Polymer Research IA ... more