16-Apr-2018 - Max-Born-Institut (MBI) im Forschungsverbund Berlin e.V

Wiggling atoms switch the electric polarization of crystals

Ferroelectric crystals display a macroscopic electric polarization, a superposition of many dipoles at the atomic scale which originate from spatially separated electrons and atomic nuclei. The macroscopic polarization is expected to change when the atoms are set in motion but the connection between polarization and atomic motions has remained unknown. A time-resolved x-ray experiment now elucidates that tiny atomic vibrations shift negative charges over a 1000 times larger distance between atoms and switch the macroscopic polarization on a time scale of a millionth of a millionth of a second.

Ferroelectric materials have received strong interest for applications in electronic sensors, memories, and switching devices. In this context, fast and controlled changes of their electric properties are essential for implementing specific functions efficiently. This calls for understanding the connection between atomic structure and macroscopic electric properties, including the physical mechanisms governing the fastest possible dynamics of macroscopic electric polarizations.

Researchers from the Max Born Institute in Berlin have now demonstrated how atomic vibrations modulate the macroscopic electric polarization of the prototype ferroelectric ammonium sulphate on a time scale of a few picoseconds. They report an ultrafast x-ray experiment which allows for mapping the motion of charges over distances on the order of the diameter of an atom (10 to the power of minus 10 m = 100 picometers) in a quantitative way. In the measurements, an ultrashort excitation pulse sets the atoms of the material, a powder of small crystallites, into vibration. A time-delayed hard x-ray pulse is diffracted from the excited sample and measures the momentary atomic arrangement in form of an x-ray powder diffraction pattern. The sequence of such snapshots represents a movie of the so-called electron-density map from which the spatial distribution of electrons and atomic vibrations are derived for each instant in time.

The electron density maps show that electrons move over distances of 10 to the power of minus 10 m between atoms which are more than a thousand times larger than their displacements during the vibrations. This behavior is due to the complex interplay of local electric fields with the polarizable electron clouds around the atoms and determines the momentary electric dipole at the atomic scale. Applying a novel theoretical concept, the time-dependent charge distribution in the atomic world is linked to the macroscopic electric polarization. The latter is strongly modulated by the tiny atomic vibrations and fully reverses its sign in time with the atomic motions. The modulation frequency of 300 GHz is set by the frequency of the atomic vibrations and corresponds to a full reversal of the microscopic polarization within 1.5 ps, much faster than any existing ferroelectric switching device. At the surface of a crystallite, the maximum electric polarization generates an electric field of approximately 700 million volts per meter.

The results establish time-resolved ultrafast x-ray diffraction as a method for linking atomic-scale charge dynamics to macroscopic electric properties. This novel strategy allows for testing quantum-mechanical calculations of electric properties and for characterizing a large class of polar and/or ionic materials in view of their potential for high-speed electronics.

Facts, background information, dossiers
  • polarization
  • electron density
  • MBI
  • electrons
  • powder diffraction
  • atomic motions
More about MBI
More about Forschungsverbund Berlin
  • News

    Atom-Billiards with X-Rays

    In 1921, Albert Einstein received the Nobel Prize in physics for the discovery that light is quantized, interacting with matter as a stream of particles called photons. Since these early days of quantum mechanics, it is known that photons also possess momentum. The photon’s ability to trans ... more

    Self-imaging of a molecule by its own electrons

    One of the long-standing goals of research on the light-induced dynamics of molecules is to observe time-dependent changes in the structure of molecules, which result from the absorption of light, as directly and unambiguously as possible. To this end, researchers have developed and applied ... more

    How to generate and steer electrons in liquid water

    Water molecules undergo ultrafast dithering motions at room temperature and generate extremely strong electric fields in their environment. New experiments demonstrate how in presence of such fields free electrons are generated and manipulated in the liquid with the help of an external tera ... more

  • Associations

    Forschungsverbund Berlin e.V.

    The Forschungsverbund Berlin e.V (FVB) comprises eight research institutes in Berlin. The institutes are active in the fields of natural sciences, life sciences and environmental sciences. They pursue common interests within the framework of a single legal entity while preserving their scie ... more