31-Jul-2018 - Fraunhofer-Zentrum für Chemisch-Biotechnologische Prozesse CBP

Fraunhofer supplies lignin for biobased materials

Using ultrapure lignin from the lignocellulosic biorefinery at the Fraunhofer Center for Chemical-Biotechnological Processes CBP in Leuna, researchers at the Technical University of Hamburg-Harburg (TU HH) have produced lignin-containing aerogels and processed high-porosity insulating boards with excellent insulation properties. The lignin was recovered from beech residual wood at the Fraunhofer CBP using the Organosolv process.

Lignin is one of the main components of woody plant parts. Embedded in the plant cell wall, the complex organic matter gives the wood its compressive and breaking strength. So far, lignin is mainly as - contaminated with sulfur - by-product in paper and pulp production available.

With the organosolv process developed by Fraunhofer, lignocellulose, the structural material of wood, is fractionated into its basic constituents only with water and alcohol. Among other things, high-purity lignin is produced, which can also serve as a valuable raw material for chemical industries. At Fraunhofer CBP, the process was successfully transferred to pilot scale four years ago and will be further developed in the other project projects. In the project "Substance Use of Lignin: Nanoporous Materials", which is funded by the Federal Ministry of Food and Agriculture (BMEL) through the project agency Fachagentur Nachwachsende Rohstoffe e. V. (FNR), the Fraunhofer CBP supplied high quality organosolv lignin.

"We fractionate the wood into its main components, lignin, hemicellulose and cellulose, by boiling it with water and alcohol at high temperature and high pressure, almost like in a pressure cooker," says Dr. Moritz Leschinsky, group manager at the Fraunhofer CBP. The lignin and hemicelluloses dissolve in the liquid while the fibrous cellulose remains firm. In a second step, the scientists extract the lignin from the liquid by cutting it and separating it. After removal of the alcohol, the hemicellulose sugars remain. If necessary, the solid, fibrous cellullose residue is, if necessary, mixed with enzymes and saccharified, that is to say cleaved into individual glucose molecules.

Lignin-based aerogels as the basis for highly porous insulation boards

The lignin can be used for biomaterials or used as a binder for the wood industry. Because of the chemically interesting structures, researchers at Fraunhofer CBP are also pursuing approaches to extract aromatic raw materials from the complex natural product. The cellulose obtained, broken down into its sugar components, is used, for example, as "food" by microorganisms. Thus, also at the CBP, fermentations with lignocellulose sugar, bio-based acids or fuels are produced.

The production of new materials - so-called aerogels - from this Organosolv lignin was successfully demonstrated by the TU Hamburg-Harburg.

Facts, background information, dossiers
  • Lignin
  • biorefineries
  • aerogels
  • wood
  • Organosolv process
  • lignocellulose
  • biomaterials
  • hemicellulose
  • celluloses
More about CBP
  • News

    Gasoline additives from sugar

    Fuel additives such as isooctane have so far been produced from mineral oil. Commissioned by the French-German company Global Bioenergies, the Fraunhofer Center for Chemical-Biotechnological Processes CBP in Leuna will soon be producing biobased additives for gasoline. The source is bio-iso ... more

    Sugar, not oil

    No more oil – renewable raw materials are the future. This motto not only applies to biodiesel, but also to isobutene, a basic product used in the chemical industry. In a pilot plant researchers now want to obtain this substance from sugar instead of oil for the first time. And in order not ... more

More about Fraunhofer-Institut IGB
  • News

    A real alternative to crude oil

    A research team from the Fraunhofer Society and the Technical University of Munich (TUM) led by chemist Volker Sieber has developed a new polyamide family which can be produced from a byproduct of cellulose production – a successful example for a more sustainable economy with bio-based mate ... more

    Sustainable Chemical Production with Electricity

    By 2050, the chemical industry should operate in a climate neutral fashion, which means phasing-out fossil oil, gas and coal. Therefore alternative carbon sources and renewable energy have to be utilized in order to replace fossil reserves. A new Stuttgart Research Initiative will elaborate ... more

    Polyamides from terpenes

    The Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB has developed a sustainable alternative to petrochemically produced plastics using terpenes found in resin-rich wood. The natural substances are available from conifers such as pine, larch or spruce. In the productio ... more

More about Fraunhofer-Gesellschaft
  • News

    Special coating protects steel from hydrogen ‘attack’

    Regeneratively produced hydrogen is an ideal energy carrier, which will be used in future applications as fuel cells and cars and will supplement natural gas as an energy source. But atomic hydrogen often induces brittle behavior in metals at high temperatures. Lukas Gröner of the Fraunhofe ... more

    Will ships run more environmentally friendly in the future?

    There is movement in the fuel market for ocean-going vessels. Targets to reduce ex-haust emissions require new sustainable ways of producing diesel and heavy fuel oil. What could these paths look like? What are the new raw materials? Researchers at Fraunhofer UMSICHT succeeded in mapping th ... more

    Biofuel for ships

    The combustion of conventional fossil fuels accounts for a large share of global CO2 emissions. A great deal of criticism is levelled against cruise and merchant ships for polluting the environment with sooty waste gas and toxic heavy fuels. Researchers at the Fraunhofer Institute for Envir ... more