My watch list
my.chemeurope.com  
Login  

Caught in the act: Images capture molecular motions in real time

15-Jul-2019

Brown University / SLAC

Researchers imaged subtle motions of a molecule known as N-methyl morpholine when excited by UV light.

Researchers have used ultra-high-speed x-ray pulses to make a high-resolution "movie" of a molecule undergoing structural motions. The research, published in Nature Chemistry, reveals the dynamics of the processes in unprecedented detail -- capturing the excitation of a single electron in the molecule.

The ability to see molecular motions in real time offers insights into chemical dynamics processes that were unthinkable just a few decades ago, the researchers say, and may ultimately help in optimizing reactions and designing new types of chemistry.

"For many years, chemists have learned about chemical reactions by essentially studying the molecules present before and after a reaction has occurred," said Brian Stankus, a recent Ph.D. graduate from Brown University and co-lead author on the paper. "It was impossible to actually watch chemistry as it happens because most molecular transformations happen very quickly. But ultrafast light sources like the one we used in this experiment have enabled us to measure molecular motions in real time, and this is the first time these sorts of subtle effects have been seen with such clarity in an organic molecule of this size."

The work is a collaboration between chemists from Brown, scientists at SLAC National Accelerator Laboratory and theoretical chemists from the University of Edinburgh in the U.K. The team was led by Peter Weber, professor of chemistry at Brown.

For the study, the researchers looked at the molecular motions that occur when the organic molecule N-methyl morpholine is excited by pulses of ultraviolet light. X-ray pulses from SLAC's Linac Coherent Light Source (LCLS) were used to take snapshots at different stages of the molecule's dynamic response.

"We basically hit the molecules with UV light, which initiates the response, and then fractions of a second later we take a "picture" -- actually we capture a scattering pattern -- with an x-ray pulse," Stankus said. "We repeat this over and over, with different intervals between the UV pulse and x-ray pulse to create a time-series."

The x-rays scatter in particular patterns depending on the structure of molecules. Those patterns are analyzed and used to reconstruct a shape of the molecule as the molecular motions unfold. That pattern analysis was led by Haiwang Yong, a graduate student at Brown and the study's co-lead author.

The experiment revealed an extremely subtle reaction in which only a single electron becomes excited, causing a distinct pattern of molecular vibrations. The researchers were able to image both the electron excitation and the atomic vibration in fine detail.

"This paper is a true milestone because for the first time, we were able to measure in great clarity the structure of a molecule in an excited state and with time resolution," said Weber, the study's corresponding author.

"Making these types of nearly noise free measurements in both energy and time is no small feat," said Mike Minitti, a senior staff scientist at SLAC and study co-author. "Over the past seven years, our collaboration has learned a great deal on how best to use the various LCLS diagnostics to precisely measure the small fluctuations in X-ray intensities, and to an even greater extent, track the femtosecond timescale changes the molecules evolve on. All of this has informed the development of custom data analysis routines that virtually eliminate pesky, unwanted signals to our data. These results demonstrate the fidelity we can achieve."

A particularly interesting aspect of the reaction, the researchers say, is that it's coherent -- meaning when groups of these molecules interact with light, their atoms vibrate in concert with each other.

"If we can use experiments like this one to study how exactly light can be used to direct the collective motion of billions of molecules, we can design systems that can be coherently controlled," Stankus said. "Put simply: If we understand exactly how light directs molecular motions, we can design new systems and control them to do useful chemistry."

Facts, background information, dossiers
  • molecules
  • electrons
  • real-time imaging
  • chemical reactions
More about Brown University
  • News

    Spaced-out nanotwins make for stronger metals

    Researchers from Brown University and the Institute of Metals Research at the Chinese Academy of Sciences have found a new way to use nanotwins -- tiny linear boundaries in a metal's atomic lattice that have identical crystalline structures on either side -- to make stronger metals. The res ... more

    Brown U. awarded $3.5 million to speed up atomic-scale computer simulations

    With a new grant from the U.S. Department of Energy, a Brown University-led research team will use machine learning to speed up atom-level simulations of chemical reactions and the properties of materials. "Simulations provide insights into materials and chemical processes that we can't rea ... more

    How order first appears in liquid crystals

    Liquid crystals undergo a peculiar type of phase change. At a certain temperature, their cigar-shaped molecules go from a disordered jumble to a more orderly arrangement in which they all point more or less in the same direction. LCD televisions take advantage of that phase change to projec ... more

  • Videos

    DNA drag race

    By studying the rate at which DNA molecules jump between "nanopits," Brown University researchers have demonstrated a situation in which a non-equilibrium phenomenon depends upon entropy. The results are surprising because entropy is a concept that physicists understand only at equilibrium. ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE