27-Aug-2019 - Christian-Albrechts-Universität zu Kiel (CAU)

Spontaneous occurrence of skyrmions in atomically thin cobalt films observed

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in 2009. Skyrmions with a diameter from micrometers to a few nanometers were discovered in different magnetic material systems. Although they can be generated on a surface of a few atoms and manipulated with electric currents, they show a high stability against external influences. This makes them potential candidates for future data storage or logic devices. In order to be competitive for technological applications, however, skyrmions must not only be very small, but also stable without an applied magnetic field.

Researchers at the universities of Hamburg and Kiel have now taken an important step in this direction. On the basis of quantum mechanical numerical calculations carried out on the supercomputers of the North-German Supercomputing Alliance (HLRN), the physicists from Kiel were able to predict that individual skyrmions with a diameter of only a few nanometres would appear in an atomically thin, ferromagnetic cobalt film (see Fig. 1). "The stability of the magnetic knots in these films is due to an unusual competition between different magnetic interactions," says Sebastian Meyer, PhD student in Prof. Stefan Heinze's research group at the Kiel University.

This prediction was subsequently confirmed by Hamburg researchers around Dr. Kirsten von Bergmann using high-resolution scanning tunneling microscopy. The low-temperature measurements by Marco Perini, PhD student in the research group of Prof. Dr. Roland Wiesendanger, show magnetic skyrmions in the prepared cobalt films without an external magnetic field having to be applied (see Fig. 2). "So far, individual skyrmions have almost always been generated by magnetic fields. In our metal films the skyrmions occur spontaneously," explains Kirsten von Bergmann. "For future applications in spinelectronics the skyrmions must not only be stable at extremely low temperatures, as in the metal films investigated, but also at ambient temperature. In order to realize this next step towards application, the competition between different magnetic interactions found here can make a major contribution."

Facts, background information, dossiers
  • skyrmions
  • metal films
  • scanning tunneling…
More about Christian-Albrechts-Universität zu Kiel
  • News

    Microplastics transport metallic pollutants

    There are a relatively large number of studies on the accumulation and transport of persistent organic pollutants by microplastics, which has resulted in good data in this regard. Data, however, on the accumulation of metals that are toxic to the environment are very rare and sometimes scie ... more

    Excitation of robust materials

    In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials are characterised by special electronic properties, which are also very robust against external perturbations. This material group al ... more

    Energy of the future: photosynthetic hydrogen from bacteria

    The transition from fossil fuels to a renewable energy supply is one of the most important global challenges of the 21st century. In order to achieve the internationally-agreed target of limiting global warming to a maximum of 1.5 degrees, the international community must drastically reduce ... more

More about Uni Hamburg
  • News

    Using corkscrew lasers to separate mirror molecules

    Many of the molecular building blocks of life have two versions that are mirror images of one another, known as enantiomers. Although seemingly identical, the two enantiomers can have completely different chemical behaviour – a fact that has major implications in our day-to-day lives. For e ... more

    Laser trick produces high-energy terahertz pulses

    A team of scientists from DESY and the University of Hamburg has achieved an important milestone in the quest for a new type of compact particle accelerator. Using ultra-powerful pulses of laser light, they were able to produce particularly high-energy flashes of radiation in the terahertz ... more

    Flexible circuits for 3D printing

    A research cooperation between the University of Hamburg and DESY has developed a process suitable for 3D printing that can be used to produce transparent and mechanically flexible electronic circuits. The electronics consists of a mesh of silver nanowires that can be printed in suspension ... more