27-Aug-2019 - Christian-Albrechts-Universität zu Kiel (CAU)

Spontaneous occurrence of skyrmions in atomically thin cobalt films observed

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in 2009. Skyrmions with a diameter from micrometers to a few nanometers were discovered in different magnetic material systems. Although they can be generated on a surface of a few atoms and manipulated with electric currents, they show a high stability against external influences. This makes them potential candidates for future data storage or logic devices. In order to be competitive for technological applications, however, skyrmions must not only be very small, but also stable without an applied magnetic field.

Researchers at the universities of Hamburg and Kiel have now taken an important step in this direction. On the basis of quantum mechanical numerical calculations carried out on the supercomputers of the North-German Supercomputing Alliance (HLRN), the physicists from Kiel were able to predict that individual skyrmions with a diameter of only a few nanometres would appear in an atomically thin, ferromagnetic cobalt film (see Fig. 1). "The stability of the magnetic knots in these films is due to an unusual competition between different magnetic interactions," says Sebastian Meyer, PhD student in Prof. Stefan Heinze's research group at the Kiel University.

This prediction was subsequently confirmed by Hamburg researchers around Dr. Kirsten von Bergmann using high-resolution scanning tunneling microscopy. The low-temperature measurements by Marco Perini, PhD student in the research group of Prof. Dr. Roland Wiesendanger, show magnetic skyrmions in the prepared cobalt films without an external magnetic field having to be applied (see Fig. 2). "So far, individual skyrmions have almost always been generated by magnetic fields. In our metal films the skyrmions occur spontaneously," explains Kirsten von Bergmann. "For future applications in spinelectronics the skyrmions must not only be stable at extremely low temperatures, as in the metal films investigated, but also at ambient temperature. In order to realize this next step towards application, the competition between different magnetic interactions found here can make a major contribution."

Facts, background information, dossiers
  • skyrmions
  • metal films
  • scanning tunneling…
More about Christian-Albrechts-Universität zu Kiel
  • News

    Exploding and weeping ceramics

    From coffee cups to bathroom tiles, ceramics are brittle.  Subject to the slightest deformation, they shatter. On the other end of the spectrum of materials, some of the most deformable materials known - that also support large stresses while they deform - are shape memory alloys.  The orig ... more

    Airy material with explosive power

    Theoretically, it only takes 450 grams of this material to lift an elephant: "Aerographene" owes this ability to its unique structure at the nano level. Visually similar to a black foam, it actually consists of a finely-structured tubular network based on graphene with numerous cavities. Th ... more

    Random effects make it difficult to optimise antibiotic therapy

    Antibiotic-resistant pathogens have become one of the greatest threats to public health. In just a few years, previously harmless bacterial infections may no longer be treatable and may once again become a leading non-natural cause of death, as they were before the antibiotic era began unti ... more

More about Uni Hamburg
  • News

    New microscopy technique for quantum simulation

    Researchers from the Institute of Laser Physics at Universität Hamburg have developed a new technique for quantum gas microscopy that now allows imaging of three-dimensional quantum systems. In the journal Nature, they report on the new method, which can be used to explore entirely new regi ... more

    Opening of Start-up Labs Bahrenfeld

    The future is moving in: Start-up Labs Bahrenfeld, a project jointly managed by DESY, the University of Hamburg and the City of Hamburg, is the new place for science entrepreneurship on DESY’s research campus. The innovation centre for deep-tech start-ups will also enhance the profile of th ... more

    Using corkscrew lasers to separate mirror molecules

    Many of the molecular building blocks of life have two versions that are mirror images of one another, known as enantiomers. Although seemingly identical, the two enantiomers can have completely different chemical behaviour – a fact that has major implications in our day-to-day lives. For e ... more