15-Oct-2019 - Ludwig-Maximilians-Universität München (LMU)

An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles and induces reactions. By altering the energy states of electrons, it reshuffles atoms and causes molecules to be reconfigured. These processes are significantly accelerated when the reactants are absorbed on the surface of nanoparticles in the atmosphere. This phenomenon is crucial for the photochemistry of the atmosphere and thus has an impact on our health and climate. One of the light-driven molecular processes that takes place on aerosols has now been investigated in detail by researchers led by Professir Matthias Kling and Dr. Boris Bergues at the Laboratory for Attosecond Physics, which is operated jointly by the LMU Munich and the MPQ. The group has developed a new method, called reaction nanoscopy, which makes it possible to study elemental physicochemical transitions on solid interfaces. They have now used it to characterize the reaction of ethanol with water molecules on the surface of glass nanoparticles under the influence of high-intensity laser light.

The researchers irradiated the spherical particles with ultrashort laser pulses, each lasting for a few femtoseconds. A femtosecond is a millionth of a billionth of a second. With the aid of reaction nanoscopy, they were able to record this ultrashort interaction in three dimensions with nanometer resolution. "We have observed the detachment and acceleration of hydrogen ions from molecules on the surface of nanoparticles. The ability to do so forms the basis for the high spatial resolution of our imaging technique," explains Boris Bergues. "Because the technology enables us to determine the exact position on the nanoparticle with the highest reaction yield, we can trace reactions of molecules adsorbed on the surface of aerosols with high spatial resolution", adds Matthias Kling.

Such processes are ubiquitous, especially in the fields of atmospheric physics and astrochemistry. For example, light in our atmosphere interacts with aerosols and their attached molecules, triggering subsequent reactions that may be important for the development of our climate. In the short term, the results obtained with the new analytical procedure by the Munich laser physicists may provide useful insights, especially in the field of atmospheric chemistry.

Facts, background information, dossiers
More about LMU
  • News

    Prebiotic chemistry - In the beginning, there was sugar

    Organic molecules formed the basis for the evolution of life. But how could inorganic precursors have given rise to them? Ludwig-Maximilians-Universitaet (LMU) in Munich chemist Oliver Trapp now reports a reaction pathway in which minerals catalyze the formation of sugars in the absence of ... more

    Chemical evolution in a tiny Gulf Stream

    Chemical reactions driven by the geological conditions on the early Earth might have led to the prebiotic evolution of self-replicating molecules. LMU scientists now report on a hydrothermal mechanism that could have promoted the process. Life is a product of evolution by natural selection. ... more

    Battery research: Finding the right blend!

    In the battery of the future, solids will replace the currently used electrolyte solutions. A team of scientists at LMU has now developed a series of new sodium ion conductors. The secret of the best material in the series lies in the exact mixing of the ingredients. The days of conventiona ... more

More about MPI für Quantenoptik
  • News

    Laser takes pictures of electrons in crystals

    Microscopes of visible light allow us to see tiny objects such living cells and their interior. Yet, they cannot discern how electrons are distributed among atoms in solids. Now researchers around Prof. Eleftherios Goulielmakis of the Extreme Photonics Labs at the University of Rostock and ... more

    Modelling the molecular architecture

    Searching for new substances and developing new techniques in the chemical industry: tasks that are often accelerated using computer simulations of molecules or reactions. But even supercomputers quickly reach their limits. Now researchers at the Max Planck Institute of Quantum Optics in Ga ... more

    Direct Observation of Giant Molecules

    The tiny size of conventional diatomic molecules in the sub-nanometer regime hinders direct optical resolution of their constituents. Physicists from the Quantum Many Body Division at MPQ led by Prof. Immanuel Bloch were able to bind pairs of highly excited atoms at a distance of one microm ... more