My watch list
my.chemeurope.com  
Login  

3D-printed optics for individualized mass production

16-Oct-2019

Dr. Sönke Steenhusen, Fraunhofer ISC

ORMOCER®-based, 3D printed optical components.

Individually manufactured and still suitable for mass production? Within the framework of the Fraunhofer "Go Beyond 4.0" project, this apparent contradiction is to be eliminated. In the field of illumination optics, the two Fraunhofer Institutes for Silicate Research ISC and for Optics and Precision Engineering IOF developed new material concepts and processing technology for multifunctional and individualized optical components for “lot size 1”.

The starting point is the relatively easy customizable 3D printing technology. Disadvantages of three-dimensional printing so far, however, were the disturbing effects in the volume and on the surfaces of printed objects, such as layering artifacts or roughness. Furthermore, the material properties of conventional 3D-printable polymers are usually insufficient for advanced optical components and systems.

High demands are placed on optical systems in the field of lighting. The materials used should be as glass-like as possible, with no yellowing during long term operation and a high transparency in the visible part of the spectrum. Artifacts or inhomogeneities in the printed volume caused by the layer-by-layer processing and not very smooth surfaces due to printing structures on the micrometer scale are unacceptable for use in optical systems. However, with ORMOCER®s – glass-like inorganic-organic hybrid polymers - from the Fraunhofer ISC and an improved printing technology from the Fraunhofer IOF, a leap in optical quality could be accomplished. Specially adjusted optical ORMOCER®s have already been used in the area of ​​optical assembly and connection technology by the Fraunhofer ISC scientists. "The initial material has had very good optical properties at all. Due to further development it was refined for the enhanced 3D printing process, as provided by the colleagues of the Fraunhofer IOF. The combination of material and technology avoids defects on surfaces and in volumes that would otherwise result from 3D printing", explains Dr. Sönke Steenhusen, project manager at Fraunhofer ISC.

In addition, other required functional components such as apertures, electrically conducting tracks or mirrors can be integrated into the printed optical components during the manufacturing process. This simplifies later assembly and enables highly complex optical components. Thus optical systems can be created easily by combining optical ORMOCER® and digital manufacturing processes. Thus, the printed optics are also interesting for advanced lighting tasks, which couldn’t be realized so far by other means. For larger quantities, the Fraunhofer researchers are already working on the parallelization of processes.

Facts, background information, dossiers
  • 3D-printing
  • hybrid polymers
  • optical components
  • optics
More about Fraunhofer-Institut ISC
  • News

    Solid state batteries for tomorrow's electric cars

    As part of a strategic international cooperation program of the Fraunhofer-Gesellschaft, Empa in Dübendorf (CH) and the Fraunhofer Institute for Silicate Research ISC in Würzburg (D) launched a three-year joint research project at the beginning of January to create the basis for a produc-ti ... more

    Novel color sensors are less expensive to manufacture

    In the FOWINA project, the Fraunhofer Institute for Integrated Circuits IIS in Erlangen and the Fraunhofer Institute for Silicate Research ISC in Würzburg have developed novel color sensors with a special microlens arrangement. The sensors can be realized directly on the chip and combine mu ... more

    R&D for Next-Generation Solid State Batteries

    The Fraunhofer Institute for Silicate Research ISC and Hydro-Québec are teaming up to conduct research and development into next-generation lithium-ion and lithium-air battery materials to be used in transportation electrification. The partnership will focus on inorganic solid electrolytes, ... more

More about Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF
  • News

    Electron spectrometer deciphers quantum mechanical effects

    Electronic circuits are miniaturized to such an extent that quantum mechanical effects become noticeable. Using photoelectron spectrometers, solid-state physicists and material developers can discover more about such electron-based processes. Fraunhofer researchers have helped revolutionize ... more

More about Fraunhofer-Gesellschaft
  • News

    Ceramic technologies for highly efficient power-to-X processes

    The speedy reduction of worldwide CO2 emissions is one of the most pressing and challenging tasks of our time. Alongside the strategy of avoiding CO2 emissions altogether, there are a number of technologies which transform unavoidable CO2 into valuable products. But these so-called power-to ... more

    Polyamides from terpenes

    The Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB has developed a sustainable alternative to petrochemically produced plastics using terpenes found in resin-rich wood. The natural substances are available from conifers such as pine, larch or spruce. In the productio ... more

    Porous silicon layers for more efficient lithium-ion batteries

    The Fraunhofer FEP has developed coating processes for industry for several years. Recently in the project PoSiBat, Fraunhofer FEP scientists were able to develop a non-toxic and efficient manufacturing process for porous silicon layers. The results of the recently completed project will be ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE