19-Nov-2019 - Max-Planck-Institut für Chemie

Pinpointing Pollutants from Space

Industrial plants can be precisely located to within two kilometers

Nitrogen oxides (NO and NO2) are major contributors to air pollution. In order to accurately predict air quality and develop strategies to reduce pollution, precise emission data are needed. Daily satellite measurements can help to derive such data. The measuring instrument observes a specific area and records all pollutants it detects between the ground and the satellite. Since pollutant levels often vary considerably, they are usually averaged over a period of several months. However, changing winds “smear out” the emission values derived from space and thus reduce the spatial resolution of the measurements.

Scientists from Germany, China and the U.S.A. have now succeeded in significantly improving the spatial resolution of nitrogen oxide emission data and are thus able to better determine the amount of emitted pollutants. In the current issue of Science Advances, the team led by the Max Planck Institute for Chemistry reports that it combined wind data with measurements from the S5P/TROPOMI research satellite, which the European Space Agency (E.S.A.) launched recently. The horizontal transport of the pollutant can be used to deduce the underlying emissions and thereby the smearing of the signal can be backcalculated.

Industrial plants can be precisely located to within two kilometers

“Our method makes it possible to localize emission sources, such as coal-fired power plants, from background pollution with an accuracy of up to two kilometers,” says Steffen Beirle, lead author of the study. “We can also quantify the amounts of pollutants emitted with greater reliability.” According to Beirle, it is now possible to test whether emissions inventories are up to date, for example, or to identify spatial patterns. National and international conventions, such as the Kyoto Protocol, require countries to report how many greenhouse gases and air pollutants they produce. These data are recorded in the emissions inventories.

Using this new method, a detailed pattern of nitrogen oxide emissions was created for the area around Riyadh, the capital of Saudi Arabia, mapping the emissions of the various oil and gas-fired power plants in that area. The emissions pattern clearly identifies point sources and can separate power plants from other sources, such as traffic. The scientists repeated this exercise for Germany and South Africa, where coal-fired power plants are the largest single sources of nitrogen oxide emissions.

The researchers measured nitrogen oxide values using the Tropospheric Monitoring Instrument TROPOMI. The spectrometer has been orbiting the Earth on board E.S.A.'s Sentinel-5 Precursor (S-5P) satellite since October 2017. In addition to nitrogen oxides, it also measures other pollutants and greenhouse gases, for instance carbon monoxide, formaldehyde, ozone, and methane.

Facts, background information, dossiers
  • nitrogen oxides
  • air pollution
  • air quality
  • pollutants
  • pollutant analysis
  • spectrometry
More about MPI für Chemie
  • News

    On the road to conductors of the future

    Superconducting wires can transport electricity without loss. This would allow for less power production, reducing both costs and greenhouse gasses. Unfortunately, extensive cooling stands in the way, because existing superconductors only lose their resistance at extremely low temperatures. ... more

    Prestigious prize for superconductivity researcher Mikhail Eremets

    The American Physical Society (APS) awards Mikhail Eremets the 2020 James C. McGroddy Prize for New Materials. As recently announced, the researcher from the Max Planck Institute for Chemistry receives the honor for his "For pioneering studies of hydrides, a new family of high Tc materials, ... more

    A chemical criterion for rating movies

    A measurable criterion now exists for determining the age rating of films. A group of scientists at the Max Planck Institute for Chemistry in Mainz has found that the concentration of isoprene in cinema air correlates with the cinema industry‘s voluntary classification of films. Evidently, ... more

More about Max-Planck-Gesellschaft
  • News

    Soft matter on new ways to self-organization

    Nematic materials, such as the liquid crystals in our displays, contain molecules that align themselves in parallel. When they are constructed from microtubules and kinesins, materials found in our cells, they become active and move and deform without the supply of energy from the outside. ... more

    How charges move in solar cells

    When the sun rises, a complex dance begins in perovskite solar cells - a type of solar cell that can supplement or replace existing silicon solar cells in the future: Electrons are supplied with energy by light and move. Where electrons move, they leave holes. At the same time, ions move ar ... more

    Green Chemistry: Sustainable p-xylene production

    Lemonade, juice and mineral water often come in PET bottles. While these are practical and functional, their production is complex and not necessarily sustainable. The starting material for terephthalic acid, which is used to produce saturated polyesters such as PET (Polyethylene terephthal ... more