27-Nov-2019 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Glass from a 3D printer

ETH researchers used a 3D printing process to produce complex and highly porous glass objects. The basis for this is a special resin that can be cured with UV light.

Producing glass objects using 3D printing is not easy. Only a few groups of researchers around the world have attempted to produce glass using additive methods. Some have made objects by printing molten glass, but the disadvantage is that this requires extremely high temperatures and heat-​resistant equipment. Others have used powdered ceramic particles that can be printed at room temperature and then sintered later to create glass; however, objects produced in this way are not very complex.

Researchers from ETH Zurich have now used a new technique to produce complex glass objects with 3D printing. The method is based on stereolithography, one of the first 3D printing techniques developed during the 1980s. David Moore, Lorenzo Barbera, and Kunal Masania in the Complex Materials group led by ETH processor André Studart have developed a special resin that contains a plastic, and organic molecules to which glass precursors are bonded.

Light used to “grow” objects

The resin can be processed using commercially available Digital Light Processing technology. This involves irradiating the resin with UV light patterns. Wherever the light strikes the resin, it hardens because the light sensitive components of the polymer resin cross link at the exposed points. The plastic monomers combine to form a labyrinth-​like structure, creating the polymer. The ceramic-​bearing molecules fill the interstices of this labyrinth.

An object can thus be built up layer by layer. The researchers can change various parameters in each layer, including pore size: weak light intensity results in large pores; intense illumination produces small pores. “We discovered that by accident, but we can use this to directly influence the pore size of the printed object,” says Masania.

The researchers are also able to modify the microstructure, layer by layer, by mixing silica with borate or phosphate and adding it to the resin. Complex objects can be made from different types of glass, or even combined in the same object using the technique.

The researchers then fire the blank produced in this way at two different temperatures: at 600˚C to burn off the polymer framework and then at around 1000˚C to densify the ceramic structure into glass. During the firing process, the objects shrink significantly, but become transparent and hard like window glass.

Patent application submitted

These 3D-​printed glass objects are still no bigger than a die. Large glass objects, such as bottles, drinking glasses or window panes, cannot be produced in this way – which was not actually the goal of the project, emphasises Masania.

The researchers have submitted a patent application for their discovery and already have one potential commercial partner interested in the technology: a supplier from the canton of Valais that provides glassware to many vineyards and wine cellars.

Facts, background information, dossiers
  • stereolithography
More about ETH Zürich
  • News

    Platelets instead of spheres make screens more economical

    ETH scientists have further developed QLED technology for screens. They have produced light sources that for the first time emit high-​intensity light in only one direction. This reduces scattering losses, which makes the technology extremely energy efficient. QLED screens have been on the ... more

    An 18-carat gold nugget made of plastic

    ETH researchers have created an incredibly lightweight 18-​carat gold, using a matrix of plastic in place of metallic alloy elements. Lovers of gold watches and heavy jewellery will be thrilled. The objects of their desire may someday become much lighter, but without losing any of their gli ... more

    Honey, I shrunk Michelangelo's David

    There he is, standing upon his pedestal: David by Michelangelo. A world-​famous statue that nearly every child can recognise. But this David is just 1 millimeter tall, pedestal included, and is made not of marble like the 5.17-​meter original, but of pure copper. It was created using 3D pri ... more

  • Videos

    Oxybromination of methane over vanadium phosphate

    ETH Zurich scientists have discovered a new catalyst that allows the easy conversion of natural gas constituents into precursors for the production of fuels or complex chemicals, such as polymers or pharmaceuticals. The new catalyst is extremely stable and results in fewer unwanted by-produ ... more